Platinum microelectrodes become essential components in microfluidic devices for separation, pumping, sensing, and other bio-analyses. Due to their chemical inertness, several research groups have developed microfluidic devices with integrated platinum electrodes on silicon, quartz, or glass substrates. However, no techniques have been reported so far for depositing platinum electrodes in polymeric microchannels. In this study, a novel fabrication scheme for forming integrated microelectrodes in a poly-dimethyl-siloxane (PDMS) microchip is described. The electrode fabrication technique consists of photolithography, thermal processing, sequential sputtering of titanium and platinum and stripping off photoresist, while soft-lithography is used to form the microfluidic channels on PDMS. This approach facilitates precise positioning of the electrodes with a micron-sized gap between them, and it can be used for both low and high aspect ratio channels. The platinum electrodes, formed on the PDMS channel surface, demonstrated very good interfacial adhesion with the substrate due to the use of a very thin titanium layer between the platinum and PDMS. The surface roughness of the electrodes was found around ±50 nm.

1.
Woolley
 
A. T.
, and
Mathies
 
R. A.
, “
Ultra-high-speed DNA Sequencing using Capillary Electrophoresis Chips
”,
Analytical Chemistry
67
(
20)
,
3676
3680
(
1995
).
2.
Cui
 
H. C.
,
Horiuchi
 
K.
,
Dutta
 
P.
, and
Ivory
 
C. F.
, “
Isoelectric Focusing in a Poly(dimethylsiloxane) Microfluidic Chip
,”
Analytical Chemistry
77
(
5)
,
1303
1309
(
2005
).
3.
Chovan
 
T.
and
Guttman
 
A.
, “
Microfabricated Devices in Biotechnology and Biochemical Processing
,”
Trends in Biotechnology
20
(
3)
,
116
122
(
2002
).
4.
Mcdonald
 
J. C.
and
Whitesides
 
G. M.
, “
Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices
,”
Accounts of Chemical Research
35
(
7)
,
491
499
(
2002
).
5.
Cui
 
H. C.
,
Horiuchi
 
K.
,
Dutta
 
P.
, and
Ivory
 
C. F.
, “
Multistage Isoelectric Focusing in a Polymeric Microfluidic Chip
,”
Analytical Chemistry
77
(
12)
,
7878
7886
(
2006
).
6.
Johnson
 
T. J.
,
Ross
 
D.
, and
Locascio
 
L. E.
, “
Rapid Microfluidic Mixing
,”
Analytical Chemistry
74
,
45
51
(
2002
).
7.
Chiou
 
C. H.
,
Lee
 
G. B.
,
Hsu
 
H. T.
,
Chen
 
P. W.
, and
Liao
 
P. C.
, “
Micro Devices Integrated with Microchannels and Electrospray Nozzles using PDMS casting techniques
,”
Sensors and Actuators B
86
,
280
286
(
2002
).
8.
Mitrovski
 
S. M.
,
Elliott
 
L. C. C.
, and
Nuzzo
 
R. G.
, “
Microfluidic Devices for Energy Conversion: Planar Integration and Performance of a Passive, Fully Immersed H2-O2 Fuel Cell
,”
Langmuir
20
,
6974
6976
(
2004
).
9.
Loo
 
Y. L.
,
Willett
 
R. L.
,
Baldwin
 
K. W.
, and
Rogers
 
J. A.
, “
Interfacial Chemistries for Nanoscale Transfer Printing
,”
J. American Chemical Soc.
124
,
7654
7655
(
2002
).
10.
Y. Park, C. Chen, K. Lim, N. Park, J. H. Kim, and J. H. Hahn, “Metal Thin-film Micropatterns Transfer on PDMS and its Application to Capillary Electrophoresis Electrochemical Detection on PDMS Microchip,” Intl. Conf. on Miniaturized Chemical and Biochemical Analysis Systems 2003, 623–626.
11.
Burns
 
M. A.
,
Johnson
 
B. N.
,
Brahmasandra
 
S. N.
,
Handique
 
K.
,
Webster
 
J. R.
,
Krishnan
 
M.
,
Sammarco
 
T. S.
,
Man
 
P. M.
,
Jones
 
D.
,
Heldsinger
 
D.
,
Mastrangelo
 
C. H.
, and
Burke
 
D. T.
, “
An Integrated Nanoliter DNA Analysis Device
,”
Science
282
,
484
487
(
1998
).
12.
Brahmasandra
 
S. N.
,
Ugaz
 
V. M.
,
Burke
 
D. T.
,
Mastrangelo
 
C. H.
, and
Burns
 
M. A.
, “
Electrophoresis in Microfabricated Devices using Photopolymerized Poly(acrylamide) Gels and Electrode-defined Sample Injection
,”
Electrophoresis
22
(
2)
,
300
311
(
2001
).
13.
Mitrovski
 
S. M.
,
Elliott
 
L. C. C.
, and
Nuzzo
 
R. G.
, “
Microfluidic Devices for Energy Conversion: Planar Integration and Performance of a Passive, Fully Immersed H2-O2 fuel cell
,”
Langmuir
20
,
6974
6976
(
2004
).
14.
Hiratsuka
 
A.
,
Kojima
 
K.
,
Suzuki
 
H.
,
Muguruma
 
H.
,
Ikebukuro
 
K.
, and
Karube
 
I.
, “
Integration of Microfabricated Needle-type Glucose Sensor Devices with a novel Thin-Film Ag/AgCl Electrode and Plasma-polymerized Thin Film: Mass Production Techniques
,”
Analyst
126
(
5)
,
658
663
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.