Accurate on-line forecasting of a tool's condition during end-milling operations is advantageous to the functionality and reliability of automated industrial processes. The ability to disengage the tool prior to catastrophic failure reduces manufacturing costs, excessive machine deterioration, and personnel hazards. Rapid computational feedback describing the system's state is critical for realizing a practical failure forecasting model. To this end, spectral analysis by fast Fourier type algorithms allows a rapid computational response. The research described herein explores the development of nontraditional real FFT (Discrete Cosine Transform) based algorithms performed in unique higher-dimensional states of observed datasets. The developed Fourier algorithm is novel since it quantifies chaotic noise rather than relying on the more traditional observation of system energy. By increasing the vector dimensionality of the DCT, the respective linear transform basis will more effectively cross-correlate the transform data into fewer (more significant) transform coefficients. Thus, a single vector in orthogonally higher-dimensional space is observed instead of multiple orthogonal vectors in single-dimensional space. More specifically, a novel noise reduction technique is utilized to track trends measured from tri-axial force dynamometer signals. This transformation effectively achieves both system noise reduction and directional independence by observing the chaotic noise instead of system energy. Algorithm output trends from six end-milling life-tests are tracked from both linear and pocketing maneuvers in order to demonstrate the technique's capabilities. In all six tests, the algorithm predicts impending tool failure with sufficient time for tool removal.
Skip Nav Destination
ASME 2006 International Mechanical Engineering Congress and
Exposition
November 5–10, 2006
Chicago, Illinois, USA
Conference Sponsors:
- Manufacturing Engineering Division and Textile Engineering Division
ISBN:
0-7918-4774-8
PROCEEDINGS PAPER
Directionally Independent Failure Prediction of End Mill Cutting Tools: An Investigation of Noise Reduction Using Higher Dimensional Real Fourier Analysis
Christopher A. Suprock,
Christopher A. Suprock
Penn State-Erie
Search for other works by this author on:
John T. Roth
John T. Roth
Penn State-Erie
Search for other works by this author on:
Christopher A. Suprock
Penn State-Erie
John T. Roth
Penn State-Erie
Paper No:
IMECE2006-14968, pp. 213-222; 10 pages
Published Online:
December 14, 2007
Citation
Suprock, CA, & Roth, JT. "Directionally Independent Failure Prediction of End Mill Cutting Tools: An Investigation of Noise Reduction Using Higher Dimensional Real Fourier Analysis." Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Manufacturing Engineering and Textile Engineering. Chicago, Illinois, USA. November 5–10, 2006. pp. 213-222. ASME. https://doi.org/10.1115/IMECE2006-14968
Download citation file:
6
Views
0
Citations
Related Proceedings Papers
Related Articles
Directionally Independent Failure Prediction of End-Milling Tools During Pocketing Maneuvers
J. Manuf. Sci. Eng (August,2007)
High Frequency Correction of Dynamometer for Cutting Force Observation in Milling
J. Manuf. Sci. Eng (June,2010)
Related Chapters
Expert Systems in Condition Monitoring
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Automatic Silence/Sonorant/Non-Sonorant Detection Based on Multi-Resolution Spectral Analysis and Anova Method
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
Spectral Analysis of Finite Amplitude Random Wave Loadings
International Conference on Mechanical and Electrical Technology 2009 (ICMET 2009)