The spectral data i.e. eigenvalues (natural frequencies) and eigenvectors (mode-shapes), characterizes the dynamics of the system. Non-destructive vibration testing, involving advanced experimental modal analysis techniques, has a potential to obtain the spectral data of the structures. It is well known that the dynamic characteristics of a structure will change due to the change in its physical properties. In this research, such changes in spectral behavior will be exploited towards the detection of minuscule changes in the mass of microstructures such as cantilever micro-beams, micro-resonators and oscillators, by solving certain direct and inverse eigenvalue problems. Some piecewise uniform micro-cantilever beams are considered here and associated transcendental eigenvalue problems are developed. Examples relevant to the design and identification of such beams are demonstrated through systematic mathematical modeling and effective solution strategy. It is shown that spectral behavior of mass loaded piecewise uniform beams can be obtained accurately and efficiently. Moreover, location and severity of the loaded mass can be identified successfully by using finite number of eigenvalues which may be available from experiments. Such formulations can be useful for, design and optimization of microstructures (micro-cantilever beams, resonators etc.), Bio-MEMS sensor design for the detection of single/multiple microbiological cells, and structural health monitoring.

1.
Kovacs, G.T.A., 1998, “Micromachined Transducers Sourcebook”, WCB/McGraw-Hill, MA.
2.
Polla
D. L.
,
Erdman
A. G.
,
Robbins
W. P.
,
Markus
D. T.
,
Diaz-Diaz
J.
,
Rizq
R.
,
Nam
Y.
,
Brickner
H. T.
,
Wang
A.
, and
Krulevitch
P.
,
2000
, “
Microdevices in Medicine: Annual Reviews of Biomedical Engineering
”,
Annual Reviews
,
2
, pp.
551
576
.
3.
Craighead
H. G.
,
2000
, “
Nanoelectromechanical Systems
”,
Science
,
290
,
1532
1535
.
4.
Abadal
G.
,
Davis
Z. J.
,
Helbo
B.
,
Borrise
X.
,
Ruiz
R.
,
Boisen
A.
,
Campabadal
F.
,
Esteve
J.
,
Figureras
E.
,
Perez-Murano
F.
, and
Barniol
N.
,
2001
, “
Electromechanical model of a resonating nanocantilever-based sensor for high-resolustion and highsensitivity mass detection
”,
Nanotechnology
,
12
, pp.
1
5
.
5.
Bashir
R.
,
2004
, “
BioMEMS: state-of-the-art in detection, opportunities and prospects
”,
Advanced Drug Delivery Reviews
,
56
(
11)
, pp.
1565
1586
.
6.
Lobontiu, N. O., 2006, “Mechanical Design of Microresonators: Modeling and Applications”, McGraw Hill, New York, First Edition.
7.
Ilic
B.
,
Czaplewski
D.
,
Zalalutdinov
M.
,
Craighead
H. G.
,
Neuzil
P.
,
Campagnolo
C.
, and
Batt
C.
,
2001
, “
Single Cell Detection With Micromechanical Oscillators
”,
Journal of Vacuum Science & Technology: B
,
19
,
2825
2828
.
8.
Brown R., Milton, M. and Gallop, J., 2001, “Review of Techniques for Single Molecule Detection in Biological Applications”, National Physical Laboratory Report, NPL Report COAM 2.
9.
Raiteri
R.
,
Grattarola
M.
and
Berger
R.
,
2002
,
Micromechanics senses biomolecules
,
Materials Today
5
,
22
29
.
10.
M.J. Sepaniak, P.G. Datskos, N.V. Lavrik, and C.A. Tripple, 2002, “Microcantilever Transducers: A New Approach in Sensor Technology”, Analytical Chemistry, 74, 568A (2002).
11.
Gupta
A.
,
Akin
D.
and
Bashir
R.
,
2004
, “
Single virus particle mass detection using microresonators with nanoscale thickness
”,
Applied Physics Letters
,
84
, pp.
1976
1978
.
12.
Srikar
V. T.
and
Senturia
S. D.
,
2002
, “
The reliability of microelectromechanical systems (MEMS) in shock environments
”,
Journal of Microelectromechanical systems
,
11
, pp.
206
14
.
13.
Ikehara
T.
,
Zwijze
R. A. F.
and
Ikeda
K.
,
2001
, “
New method for an accurate determination of residual strain in polycrystalline silicon films by analysing resonant frequencies of micromachined beams
”,
Journal of Micromechanics and Microengineering
,
11
, pp.
55
60
.
14.
Srikar
V. T.
and
Spearing
S. M.
,
2003
, “
A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems
”,
Experimental Mechanics
,
43
, pp.
238
247
.
15.
Low
K. H.
,
2000
, “
A modified Dunkerley formula for eigenfrequencies of beams carrying concentrated masses
”,
International Journal of Mechanical Science
,
42
, pp.
1287
1305
.
16.
Turhan
O.
,
2000
, “
On the fundamental frequency of beams carrying a point mass: Rayleigh approximations versus exact solutions
”,
Journal of Sound and Vibration
,
230
(
2)
, pp.
449
459
.
17.
Low
K. H.
,
2003
, “
Frequencies of beams carrying multiple masses: Rayleigh estimation versus eigenanalysis solutions
”,
Journal of Sound and Vibration
,
268
(
4)
, pp.
843
853
.
18.
Singh
K. V.
, and
Ram
Y. M.
, 2002, “
Transcendental eigenvalue problem and its applications
”,
AIAA Journal
,
40
(
7)
, pp.
1402
1407
.
19.
Singh K. V., 2003, “The transcendental eigenvalue problem and its application in system identification”, Ph.D. Dissertation, Louisiana State University.
20.
Singh
K. V.
, and,
Ram
Y. M.
,
2006
, “
Transcendental inverse eigenvalue problem associated with longitudinal vibrations in rods
”,
AIAA Journal
,
44
(
2)
,
317
322
, (2006).
21.
Morassi
A.
, and,
Dilena
M.
,
2002
, “
On point mass identification in rods and beams from minimal frequency measurements
”,
Inverse Problems in Engineering
,
10
(
3)
, pp.
183
201
.
22.
Ram
Y. M.
and
Elhay
S.
,
1995
, “
Dualities in vibrating rods and beams - continuous and discrete models
”,
Journal of Sound and Vibration
,
184
(
5)
, pp.
759
766
.
23.
Gladwell
G. M. L.
,
2002
, “
Isospectral vibrating beams
”,
Proceedings of the Royal Society of London Series: A -Mathematical Physical and Engineering Sciences
,
458
(2027), pp.
2691
2703
.
This content is only available via PDF.
You do not currently have access to this content.