Tailoring the rheological properties of polymers is important for practical applications such as the stabilization of polymer emulsions, blends, and foams. Nanomaterial (i.e. Carbon Nanotubes, Carbon Nanofibers, Dendrimers, and Carbon Black) are an excellent way to modify the mechanical, thermal, electrical, and optical properties of materials. This paper presents steady shear and linear viscoelastic oscillation testing of three polymers: Polyethylene (PE); Polypropylene (PP); and Polystyrene (PS). These polymers were studied in bulk form and as composites containing designated volume fractions of nanomaterials over a range of processing temperatures and conditions. The nanomaterials investigated in this study include Carbon Black, Vapor Grown Carbon Nanofibers, Multiwalled Carbon Nanotubes, Single Walled Carbon Nanotubes, and COOH functionalized Single Walled Carbon Nanotubes. The nanocomposite samples used for rheological experimentation were manufactured by melt mixing and injection molding. We will address whether the melt rheological measurements can unequivocally detect the co-continuous composition range in such systems. We will also investigate the melt flow rate through nanomaterial concentration variations, as well as discuss the storage modulus (G'), viscous modulus (G"), and complex viscosity of homogeneous polymer materials versus carbon nanocomposite material at various frequencies.

1.
Baughman
R. H.
,
Zakhidov
A. A.
, and
de Heer
W. A.
,
2002
, “
Carbon nanotubes—the route toward applications
,”
J. Sci.
,
297
, pp.
787
792
.
2.
Lozano
K.
, and
Barrera
E. V.
,
2001
, “
Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses
,”
J. Appl. Polym. Sci.
,
79
(
1)
, pp.
125
133
.
3.
Lahr
B.
, and
Sandler
J.
,
2005
, “
Fire behavior of polyamide 6/multiwall carbon nanotube nanocomposites
,”
Europ. Polym. J.
,
41
, pp.
1061
1070
.
4.
Qian
D.
,
Dickey
E. C.
,
Andrews
R.
, and
Rantell
T.
,
2000
, “
Load transfer and deformation mechanism in carbon nanotube.polystyrene composites
,”
J. Appl. Phys. Lett.
,
76
(
20)
, pp.
2868
70
.
5.
Sandler
J. K. W.
,
Pegel
S.
,
Cadek
M.
,
Gojny
F.
,
van Es
M.
,
Lohmar
J.
,
Blau
W. J.
,
Schulte
K.
,
Windle
A. H.
, and
Shaffer
M. S. P.
,
2004
, “
A comparative study of melt spun polyamide-12 fibers reinforced with carbon nanotubes and nanofibers
,”
J. Polym.
,
45
(
6)
, pp.
2001
2015
.
6.
Beyer
G.
,
2002
, “
Carbon nanotubes as flame retardants for polymers
,”
J. Fire Mat.
,
26
(
6)
, pp.
291
293
.
7.
Vohs
J. K.
,
Brege
J. J.
,
Raymond
J. E.
,
Brown
A. E.
,
Williams
G. L.
, and
Fahlman
B. D.
,
2004
, “
Low temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride
,”
J. Am. Chem. Soc.
,
126
(
32)
, pp.
9936
9937
,
8.
Gupta, R. K., 2000, Polymer and Composite Rheology, Marcel Dekker, Inc., New York, NY.
9.
Kashiwagi
T.
,
Grulke
E.
,
Hilding
J.
,
Harris
R.
,
Awad
W.
, and
Douglas
J.
,
2002
, “
Thermal degradation and flammability properties of poly (propylene)/carbon nanotube composites
,”
J. Macromol. Rap. Comm.
,
23
(
13)
, pp.
761
765
.
10.
Beyer
G.
,
2002
, “
Carbon nanotubes-a new class of flame retardants for polymers
,”
J. Gummi Fasern Kunstst
,
55
(
9)
, pp.
596
600
.
11.
Kashiwagi
T.
,
Grulke
E.
,
Hilding
J.
,
Groth
K.
,
Harris
R.
,
Butler
K.
,
Shields
J.
,
Kharchenko
S.
, and
Douglas
J.
,
2004
, “
Thermal and flammability properties of polypropylene/ carbon nanotube nanocomposites
,”
J. Polym.
,
45
(
12)
pp.
4227
4239
.
12.
Kilbride
B. E.
,
Coleman
J. N.
,
Fraysse
J.
,
Fournet
P.
,
Cadek
M.
,
Drury
A.
,
Hutzler
S.
,
Roth
S.
, and
Blau
W. J.
,
2002
Experimental observation of scaling laws for alternating current and direct current conductivity in polymer—carbon nanotube composite thin films
,”
J. Appl. Phys.
92
(
7)
, pp.
4024
4030
.
13.
Schartel
B.
,
Wendorff
J. H.
,
1999
, “
Molecular composites for molecular reinforcement: a promising concept between success and failure
,”
J. Polym. Eng. Sci.
,
39
(
1)
, pp.
128
151
.
14.
Hwang
W. F.
,
Wiff
D. R.
,
Benner
C. L.
, and
Helminiak
T. E.
,
1983
, “
Composites on a molecular level: phase relationships, processing, and properties
,”
J. Macromol. Sci. Phys.
,
22
, pp.
231
257
.
15.
Takayanagi
M.
,
1980
, “
Polymer composites of rigid and flexible molecules
,”
J. Pure Appl. Chem.
,
55
, pp.
819
832
.
16.
Shaffer
M. S.
, and
Windle
A. H.
, “
1999
, “
Fabrication and characterization of carbon nanotube/poly/vinyl alcohol composites
,”
J. Adv. Mat.
,
11
(
11)
pp.
937
941
.
17.
Potschke
P.
,
Bhattacharyya
A. R.
, and
Janke
A.
,
2004
, “
Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion
,”
Eur. Polym. J.
,
40
(
1)
, pp.
137
148
.
18.
Potschke
P.
,
Fornes
T. D.
, and
Paul
D. R.
,
2002
, “
Rheological behavior of multiwalled carbon nanotube/polycarbonate composites
,”
J. Polym.
,
43
(
11)
, pp.
3247
3255
.
19.
Meincke
O.
,
Kaempfer
D.
,
Weickmann
H.
,
Friedrich
C.
,
Vathaue
r M.
, and
Warth
H.
,
2004
, “
Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene
,”
J. Polym.
,
45
(
3)
, pp.
739
748
.
20.
Corte`s
P.
,
Lozano
K.
,
Barrera
E. V.
, and
Bonilla-Rios
J.
,
2003
, “
Effects of nanofiber treatments on the properties of vapor-grown carbon fiber reinforced polymer composites
,”
J. Appl. Polym. Sci.
,
89
(
9)
, pp.
2527
2534
.
21.
Madron˜ero
A.
, and
Ariza
E. J.
,
1996
, “
Some microstructural aspects of vapour-grown carbon fibers to disclose their failure mechanisms
,”
J. Mat. Sci.
,
31
(
23)
, pp.
6189
6193
.
22.
Darmstadt, H., Su¨mmchen, L., and Ting, J. M., 2004, “Formation of filamentous carbons over supported Fe catalysis through methane decomposition,” J. Cataly., 35, pp.1581.
23.
Lozano
K.
, and
Barrera
E. V.
,
2001
, “
Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses
,”
J. Appl. Polym. Sci.
,
79
(
1)
, pp.
125
133
.
24.
Lozano
K.
,
Bonilla-Rios
J.
, and
Barrera
E. V.
,
2001
, “
A study on nanofiber-reinforced thermoplastic composites (II): Investigation of the mixing rheology and conduction properties
,”
J. Appl. Polym. Sci.
,
80
(8), pp.
1162
1172
.
25.
Lozano
K.
, and
Barrera
E.
, et al.,
2001
, “
Nanofiber-Reinforced Thermoplastic Composites. thermoanalytical and mechanical analyses
,”
J. Appl. Polym. Sci
,
79
, pp.
125
133
.
26.
Michler, G. H., and Balta-Calleja, F. J., 2005, Mechanical Properties of Polymers Based on Nanostructure and Morphology, CRC Press.
27.
Song
M.
,
Hourston
D. J.
, and
Schafer
F. U.
,
2001
, “
Polymer/layered clay nanocomposites: 2 polyurethane nanocomposites
,”
J. Polym. Sci.
,
43
(
3)
, pp.
1017
1020
.
28.
Sperling
L. H.
, and
Mishra
V., J.
,
1996
, “
The current status of interpenetrating polymer networks
,”
J. Polym. Adv. Tech.
,
7
(
4)
, pp.
197
208
.
29.
Lipatov
Y. S.
,
2002
, “
Polymer blends and interpenetrating polymer networks at the interface with solids
,”
J. Appl. Polym. Sci.
,
27
(
9)
, pp.
1721
1801
.
30.
Nemirovski
N.
,
Silverstein
M. S.
, and
Narkis
M.
,
2000
, “
Multicomponent latex IPN materials. I. Morphology control
,”
J. Polym. Adv. Technol.
,
35
(
11)
, pp.
2193
2206
.
31.
Hourston
D. J.
, and
Schafer
F.
,
1998
, “
Poly(ether urethane)/poly(ethyl methacrylate) IPNs with high damping characteristics: The influence of the crosslink density in both networks
,”
J. Polym. Adv. Technol.
,
62
(
12)
, pp.
2025
2037
.
32.
Mandelkern
L.
,
McLaughlin
K. W.
, and
Alamo
R. G.
,
1992
, “
Phase and supermolecular structure of binary mixtures of linear polyethylene fractions
,”
J. Macromol.
,
25
, pp.
1440
1444
.
33.
Mongruel
A.
, and
Cartault
M.
,
2006
, “
Nonlinear Rheology of Styrenebutadine rubber Filled with Carbon-black or Silica Particles
J. Rheo.
50
(
2)
pp.
115
135
.
34.
Shenoy A. V., 1999, Rheology of filled polymer systems, Dordrecht, Boston, London: Kluwer Academic Publishers, Great Britain, pp. 243–390.
35.
Utracki L.A., 1987, Rheology and processing of multiphase systems. Current topics in polymer, science. Carl Hanser Munich, Vienna, New York: pp. 7–59.
This content is only available via PDF.
You do not currently have access to this content.