This paper reviews various studies carried out on thermal issues in lithium-ion batteries. Although thermal behavior of Li-ion batteries plays an important role in performance, life cycle and safety of these batteries, it has not been studied as intensely as chemical characteristics of these batteries. In this review paper, studies concerning thermal issues on Li-ion batteries are classified based on their methodologies and the battery components being investigated. The methodologies include mathematical thermal modeling, calorimetry, electrochemical impedance spectroscopy and thermal management system method. The battery components that have been studied include anode, cathode, electrolyte and the whole cell.
Volume Subject Area:
Materials
1.
D. Linden, T. Reddy, “Handbook of Batteries,” McGraw-Hill, 2002.
2.
G. Nazri, G. Pistoia, “Lithium Batteries Science and Technology,” Kluwer Academic Publishers, 2004.
3.
M. Fleischauer, T. Hatchard, A. Bonakdarpour, J. Dahn, “Combinatorial investigations of advanced Li-ion rechargeable battery electrode materials,” Measurement Science Technology, Vol.16, 2005.
4.
I. Isaev, G. Salitra, A. Soffer, Y. Cohen, D. Aurbach, J. Fischer, “A new approach for the preparation of anodes for Li-ion batteries based on activated hard carbon cloth with pore design,” Journal of Power Sources, Vol.191–121, 2003.
5.
R. Hollandsworth, M. Isaacson, E. Cuellar, J. Read, “Thermal analysis of the Ultralife SSSTM lithium ion solid polymer battery with high energy anode for dual use applications,” Proceedings of the Intersociety Energy Conversion Engineering Conference, Vol.2, 1997.
6.
H. Yang, J. Prakash, “Determination of the reversible and irreversible heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique, Journal of the Electrochemical Society, Vol.151, No.8, 2004.
7.
M. Cosley, M. Garcia, “Battery thermal management system,” International Telecommunications Energy Conference (Proceedings), 26th Annual International Telecommunications Energy Conference, INTELEC 2004.
8.
V. Srinivasan and C. Y. Wang, “Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells,” Journal of the Electrochemical Society, Vol.150, No.1, 2003.
9.
P. Gomadam, J. Weidner, R. Dougal, R. White, “Mathematical modeling of lithium-ion and nickel battery systems,” Journal of Power Sources, Vol.110, No.2, 2002.
10.
M. Doyle, T. Fuller, J. Newman, “Modeling of galvanostatic charge and discharge of the lithium/ polymer/insertion cell,” Journal of the Electrochemical Society, Vol.140, No.6, 1993.
11.
M. Doyle, J. Newman, A. Gozdz, C. Schmutz, J. Tarascon, “Comparison of modeling predictions with experimental data from plastic lithium ion cells,” Journal of the Electrochemical Society, Vol.143, No.6, 1996.
12.
C. Pals, J. Newman, “Thermal modeling of the lithium/polymer battery. I. Discharge behavior of a single cell,” Journal of the Electrochemical Society, Vol.142, No.10, 1995.
13.
C. Pals, J. Newman, “Thermal modeling of the lithium/polymer battery. II. Temperature profiles in a cell stack,” Journal of the Electrochemical Society, Vol.142, No.10, Oct, 1995
14.
G. Botte, B. Johnson, R. White, “Influence of some design variables on the thermal behavior of a lithium-ion cell,” Journal of the Electrochemical Society, Vol.146, No.3, 1999.
15.
D. Bernardi, E. Pawlikowski, J. Newman, “General Energy Balance for Battery Systems,” Journal of the Electrochemical Society, Vol.132, No.1, 1985.
16.
L. Rao, J. Newman, “Heat-generation rate and general energy balance for insertion battery systems,” Journal of the Electrochemical Society, Vol.144, No.8, 1997.
17.
W. B. Gu and C. Y. Wang, “Thermal-Electrochemical Coupled Modeling of a Lithium-ion Cell,” Lithium Batteries Proceedings of the International Symposium, PV 99–25, The Electrochemical Society, 2000.
18.
L. Song, J. Evans, “Electrochemical-thermal model of lithium polymer batteries,” Journal of the Electrochemical Society, Vol.147, No.6, 2000.
19.
V. Srinivasan and C. Y. Wang, “Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells,” Journal of the Electrochemical Society, Vol.150, No.1, 2003.
20.
G. Ho¨hne, W. Hemminger, H. Flammersheim, “Differential Scanning Calorimetry,” Springer, 2003.
21.
M. Richard, J. Dahn, “Thermal stability of lithium ion battery electrode materials in organic electrolytes,” Materials Research Society Symposium - Proceedings, Vol.496, 1998.
22.
J. Jiang, H. Fortier, aJ. Reimers, J. Dahn, “Thermal Stability of 18650 Size Li-Ion Cells Containing LiBOB Electrolyte Salt,” Journal of the Electrochemical Society, Journal of the Electrochemical Society, Vol.151, No.4, 2004.
23.
H. Maleki, J. Howard, “Role of the cathode and anode in heat generation of Li-ion cells as a function of state of charge,” Journal of Power Sources, Vol. 137, No.1, 2004.
24.
E. Roth, “Thermal characterization of Li-ion cells using calorimetric techniques,” Proceedings of the Intersociety Energy Conversion Engineering Conference, Vol.2, 200.
25.
J. Yamaki, M. Ihara, S. Okada, “Improvement of Thermal Stability of Lithium Ion Batteries by Using Methyl Difluoroacetate as an Electrolyte Solvent,” International Telecommunications Energy Conference (Proceedings), 2003.
26.
B. Ravdel, K. Abraham, R. Gitzendanner, J. DiCarlo, B. Lucht, C. Campion, “Thermal stability of lithium-ion battery electrolytes,” Journal of Power Sources, Vol.119–121, 2003.
27.
H. Maleki, G. Deng, I. Kerzhner-Haller, A. Anani, J. Howard, “Thermal stability studies of binder materials in anodes for lithium-ion batteries,” Journal of the Electrochemical Society, Vol.147, No.12, 2000.
28.
Y. Baba, S. Okada, J. Yamaki, “Thermal stability of LixCoO2 cathode for lithium ion battery,” Solid State Ionics, Vol.148, No.3–4, 2002.
29.
H. Maleki, G. Deng, A. Anani, J. Howard, “Thermal stability studies of Li-ion cells and components,” Journal of the Electrochemical Society, Vol.146, No.9, 1999.
30.
Y. Gao, M. Yakovleva, W. Ebner, “Novel LiNi1-xTix/2Mgx/2O2 Compounds as Cathode Materials for Safer Lithium-Ion Batteries,” Electrochemical and Solid-State Letters, Vol.1, No.3, 1998.
31.
H. Yang, J. Prakash, “Determination of the reversible and irreversible heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique, Journal of the Electrochemical Society, Vol.151, No.8, 2004.
32.
J. Hong and J. Selman, “Relationship between Calorimetric and Structural Characteristics of Lithium-ion Cells,” Journal of the Electrochemical Society, Vol.147, No.9, 2000.
33.
K. Gavritchev, G. Sharpataya, A. Smagin, E. Malyi and V. Matyukha, “Calorimetric Study of Thermal Decomposition of Lithium Hexafluorophosphate,” Journal of Thermal Analysis and Calorimetry, Vol.73, 2003.
34.
K. Sawai, T. Ohzuku, “Method of impedance spectroscopy for predicting the dynamic behavior of electrochemical system and its application to a high-area carbon electrode,” Journal of the Electrochemical Society, Vol.144, No.3, 1997.
35.
P. Suresh, P.A. Shukla, N. Munichandraiah, “Temperature dependence studies of a.c. impedance of lithium-ion cells,” Journal of Applied Electrochemistry, Vol.32, No.3, 2002.
36.
E. Barsoukov, J. Macdonald, “Impedance Spectroscopy Theory, Experiment, and Applications,” Wiley-Interscience, 2005.
37.
K. Takano, K. Nozaki, Y. Saito, K. Kato, A. Negishi, “Impedance spectroscopy by voltage-step chronoamperometry using the Laplace transform method in a lithium-ion battery,” Journal of the Electrochemical Society, Vol.147, No.3, 2000.
38.
A. Funabiki, M. Inaba, Z. Ogumi, S. Yuasa, J. Otsuji, A. Tasaka, “Impedance study on the electrochemical lithium intercalation into natural graphite powder,” Journal of the Electrochemical Society, Vol.145, No.1, 1998.
39.
F. Croce, G. Appetecchi, S. Slane, M. Salomon, M. Tavarez, S. Arumugam, Y. Wang, S. Greenbaum, “Impedance and lithium-7 NMR studies of polymer electrolytes based on poly(vinylidene fluoride),” Solid State Ionics, Vol.86–88, No.pt 1, 1996.
40.
E. Barsoukov, J. Jang, H. Lee, “Thermal impedance spectroscopy for Li-ion batteries using heat-pulse response analysis,” Journal of Power Sources, Vol.109, No.2, 2002.
41.
S. Zhang, K. Xu, T. Jow, “Electrochemical impedance study on the low temperature of Li-ion batteries,” Electrochimica Acta, Vol.49, No.7, 2004.
42.
X. Liao, Z. Ma, Y. He, X. Zhang, L. Wang, Y. Jiang, “Electrochemical Behavior of LiFePO4/C Cathode Material for Rechargeable Lithium Batteries,” Journal of the Electrochemical Society, Vol.152, No.10, 2005.
43.
J. Hong, H. Maleki, S. Al Hallaj, L. Redey and J. Selman, “Electrochemical-Calorimetric Studies of Lithium-Ion Cells,” Journal of the Electrochemical Society, Vol.145, No.5, 1998.
44.
S. Al Hallaj, R. Venkatachalapathy, J. Prakash, J. Selman, “Entropy changes due to structural transformation in the graphite anode and phase change of the LiCoO2 cathode,” Journal of the Electrochemical Society, Vol.147, No.7, 2000.
45.
K. Thomas, C. Bogatu, J. Newman, “Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide,” Journal of the Electrochemical Society, Vol.148, No.6, 2001.
46.
K. Thomas, J. Newman, “Thermal Modeling of Porous Insertion Electrodes,” Journal of the Electrochemical Society, Vol.150, No.2, 2003.
47.
K. Onda, H. Kameyama, T. Hanamoto, K. Ito, “Experimental study on heat generation behavior of small lithium-ion secondary batteries,” Journal of the Electrochemical Society, Vol.150, No.3, 2003.
48.
M. Cosley, M. Garcia, “Battery thermal management system,” International Telecommunications Energy Conference (Proceedings), 26th Annual International Telecommunications Energy Conference, INTELEC 2004.
49.
S. Al-Hallaj, J. Selman, “Novel thermal management system for electric vehicle batteries using phase-change material,” Vol.147, No.9, 2000.
50.
S. Khateeb, M. Farid, J. Selman, S. Al-Hallaj, “Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter,” Journal of Power Sources, Vol.128, No.2, 2004.
51.
P. Nelson, D. Dees, K. Amine, G. Henriksen, “Modeling thermal management of lithium-ion PNGV batteries,” Journal of Power Sources, Vol.110, No.2, 2002.
52.
S. Khateeb, S. Amiruddin, M. Farid, J. Selman, S. Al-Hallaj, “Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation,” Journal of Power Sources, Vol.142, No.1–2, 2005.
53.
R. Hollandsworth, M. Isaacson, E. Cuellar, J. Read, “Thermal analysis of the Ultralife SSSTM lithium ion solid polymer battery with high energy anode for dual use applications,” Proceedings of the Intersociety Energy Conversion Engineering Conference, Vol.2, 1997.
54.
Y. Saito, K. Kanari, K. Takano, “Thermal studies of a lithium-ion battery,” Journal of Power Sources, Vol.68, No.2 pt 2, 1997.
55.
R. Ponnappan, T. Ravigururajan, “Contact thermal resistance of Li-ion cell electrode stack,” Journal of Power Sources, Vol.129, No.1, 2004.
56.
H. Maleki, J. Selman, R. Dinwiddie, H. Wang, “High thermal conductivity negative electrode material for lithium-ion batteries,” Journal of Power Sources, Vol.94, No.1, 2001.
57.
L. Song, J. Evans, “Thermal stability of lithium polymer batteries,” Journal of the Electrochemical Society, Vol.145, No.7, 1998.
58.
H. Maleki, S. Al Hallaj, J. Selman, R. Dinwiddie, H. Wang, “Thermal properties of lithium-ion battery and components,” Journal of the Electrochemical Society, Vol.146, No.3, 1999.
59.
X. Sun, H. Lee, X. Yang, J. McBreen, “Comparative studies of the electrochemical and thermal stability of two types of composite lithium battery electrolytes using boron-based anion receptors,” Journal of the Electrochemical Society, Vol.146, No.10, 1999.
60.
T. Hatchard, D. MacNeil, D. Stevens, L. Christensen, J. Dahn, “Importance of heat transfer by radiation in Li-ion batteries during thermal abuse,” Electrochemical and Solid-State Letters, Vol.3, No.7, 2000.
61.
Y. Saito, K. Takano, K. Kanari, A. Negishi, K. Nozaki, K. Kato, “Comparative study of thermal behaviors of various lithium-ion cells,” Journal of Power Sources, Vol.97–98, 2001.
62.
L. Song, J. Evans, “Measurements of the thermal conductivity of lithium polymer battery composite cathodes,” Journal of the Electrochemical Society, Vol.146, No.3, 1999.
63.
W. Lu, C. Lee, R. Venkatachalapathy, J. Prakash, “Electrochemical and thermal behaviour of LiNi0.8Co0.2O2 cathode in sealed 18650 Li-ion cells,” Journal of Applied Electrochemistry, Vol.30, No.10, 2000.
64.
H. Liu, J. Li, Z. Zhang, Z. Gong, Y. Yang, “Structural, electrochemical and thermal properties of LiNi0.8-yTiyCo0.2O2 as cathode materials for lithium ion battery,” Electrochimica Acta, Vol.49, No.7, 2004.
65.
H. Pfeiffer, F. Tancret, T. Brousse, “Synthesis, characterization and electrochemical properties of copper phosphide (Cu3P) thick films prepared by solid-state reaction at low temperature: A probable anode for lithium ion batteries,” Electrochimica Acta, Vol.50, No.24, 2005.
66.
M. Ding, K. Xu, S. Zhang, K. Amine, G. Henriksen, T. Jow, “Change of Conductivity with Salt Content, Solvent Composition, and Temperature for Electrolytes of LiPF6 in Ethylene Carbonate-Ethyl Methyl Carbonate,” Journal of the Electrochemical Society, Vol.148, No.10, 2001.
67.
S. Zhang, K. Xu, T.R. Jow, “Low temperature performance of Li-ion cells with a LiBF4-based electrolyte,” Journal of Electrochemistry, Vol.7, 2003.
This content is only available via PDF.
Copyright © 2006
by ASME
You do not currently have access to this content.