This paper demonstrates ability to significantly increase buckling loads of perforated composite laminated plates by synergizing FEM and a genetic optimization algorithm (GA). Plate geometry is discretized into specially-developed 3D degenerated eight-node shell isoparametric layered composite elements. General shell theory, involving incremental nonlinear finite element equilibrium equation, is employed. Fiber orientation within individual plies of each element is controlled independently by the genetic algorithm. Eigen buckling analysis is performed using the subspace iteration method. Available results demonstrate the approach is superior to more conventional methodologies such as modifying ply thickness or the stacking sequence of individual rectilinear plies having common fiber orientation through the plate.

1.
Todoroki
A.
and
Sasai
M.
,
1999
, “
Improvement of design reliability for buckling load maximization of composite cylinder using genetic algorithm with recessive-gene-like repair
,”
JSME internal journal Series A
,
42
, No.
4
, pp.
530
536
.
2.
Spallino
R.
and
Thierauf
G.
,
2000
, “
Thermal buckling optimization of composite laminates by evolution strategies
,”
Computers & structures
,
78
, pp.
691
697
.
3.
Riche
L. R.
and
Haftka
R. T.
,
1993
, “
Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm
”,
AIAA journal
,
31
, No.
5
, pp.
951
956
.
4.
Kang
J. H.
and
Kim
C. G.
,
2005
, “
Minimum weight design of compressively loaded composite plates and stiffened panels for postbuckling strength by genetic algorithm
,”
Composite structures
,
69
, pp.
239
246
.
5.
Holland
J. H.
,
1988
, “
Genetic algorithms and machine learning
,”
Machine learning
,
3
, pp.
95
99
.
6.
Goldberg, D. E., 1989, “Genetic algorithms in searchoptimization & machine learning,” Addison Wesley.
7.
Soremekun
G.
,
Gu¨rdal
Z.
,
Haftka
R. T.
and
Watson
L. T.
,
2001
, “
Composite laminate design optimization by genetic algorithm with generalized elitist selection
,”
Computers & structures
,
79
, pp.
131
143
.
8.
Gu¨rdal, Z., Haftka, R. T. and Hajela, P., 1999, “Design and optimization of laminated composite materials,” Wiley Interscience.
9.
Adali
S.
,
Richter
A.
,
Verijenko
V. E.
and
Summers
E. B.
,
1995
, “
Optimal design of hybrid laminates with discrete ply angles for maximum buckling load and minimum cost
,”
Composite structures
,
32
, pp.
409
415
.
10.
Bathe, K. J., 1982, “Finite element procedures in engineering analysis,” Prentice Hall.
11.
Chang
T. Y.
and
Sawamiphakdi
K.
,
1981
, “
Large deformation analysis of laminated shells by finite element method
,”
Computers & structures
,
13
, pp.
331
340
.
12.
Cho, H. K. and Rowlands, R. E., 2005, “Minimizing stress concentrations in laminated composites by genetic algorithm,” Proceedings of international mechanical engineering congress and exposition: IMECE2005-81005, Orlando.
13.
Reddy, J. N., 1997, “Mechanics of laminated composite plates: theory and analysis,” CRC press.
14.
Staab, G. H., 1999, “Laminar composites,” Butterworth Heinmann.
15.
Bathe
K. J.
and
Wilson
E. L.
,
1973
, “
Solution methods for eigenvalue problems in structural mechanics
,”
International journal for numerical methods in engineering
,
6
, pp.
213
226
.
16.
Bathe, K. J., 1971, “Solution methods for large generalized eigenvalue problems in structural engineering,” Report UC SESM 71–20, Civil engineering Department, University of California, Berkeley.
17.
Adams
D. B.
,
Watson
L. T.
,
Gu¨rdal
Z.
and
Anderson-Cook
C. M.
,
2004
, “
Genetic algorithm optimization and blending of composite laminates by locally reducing laminate thickness
,”
Advances in engineering software
,
35
, pp.
35
43
.
18.
Michalewicz, Z., 1996, “Genetic algorithms + data structures evolution programs,” Springer.
19.
Haftka, R. T. and Gu¨rdal, Z., 1992, “Elements of structural optimization,” Kluwer Academic Publishers.
20.
Hyer
M. W.
, and
Lee
H. H.
,
1991
, “
The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes
,”
Composite structures
,
18
, pp.
239
261
.
21.
Hyer, M. W. and Charette, R. F., 1987, “Innovative design of composite structure: further studies in the use of a curvilinear fiber format to improve structural efficiency,” Technical report VPI-E-88-8 Virginia Polytech.
22.
Whitney, J. W., Daniel, I. M., and Pipes, R. B., 1984, “Experimental mechanics of fiber reinforced composite materials,” SEM Monograph #4, SEM/Prentice Hall.
23.
Chandrashekhara
K.
and
Bhatia
K.
,
1993
, “
Active buckling control of smart composite plates-finite element analysis
,”
Smart Mater. Struct.
,
2
, pp.
31
39
.
24.
Goldmanis
M.
and
Riekstinsh
A.
,
1994
, “
Post-buckling finite element analysis of composite cylindrical panels in axial compression
,”
Composite structures
,
29
, pp.
457
462
.
25.
Babu
C. S.
and
Kant
T.
,
2000
, “
Refined higher order finite element models for thermal buckling of laminated composite and sandwich plates
,”
Journal of thermal stresses
,
23
, pp.
111
130
.
26.
Jones, R. M., 1999, “Mechanics of composite materials: 2nd,” Taylor & Francis.
27.
Rao, S. S., 1996, “Engineering optimization theory and practice,” Wiley Interscience.
28.
Yang
J.
,
Liew
K. M.
, and
Kitipornchai
S.
,
2005
, “
Second-order statistics of the elastic buckling of functionally graded rectangular plates
,”
Composites science and technology
,
65
, pp.
1165
1175
.
29.
Kim
K. D.
,
1996
, “
Buckling behavior of composite panels using the finite element method
,”
Composite structures
,
36
, pp.
33
43
.
30.
Kogiso
K.
,
Watson
L. T.
,
Gurdal
Z.
,
Haftka
R. T.
, and
Nagendra
S.
,
1994
, “
Minimum thickness design of composite laminates subject to buckling and strength constraints by genetic algorithms
,”
Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference
,
4
, pp.
2257
2275
.
31.
Lin
C. C.
and
Lee
Y. J.
,
2004
, “
Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement
,”
Composite structures
,
63
, pp.
339
345
.
This content is only available via PDF.
You do not currently have access to this content.