Constitutive modeling of stress-strain relationship of open-celled PLGA 85/15 foams under compression was studied. A constitutive model for compressive behavior was directly derived from the morphology of a unit cubic cell. These constitutive equations describe the stress-strain relationship as a function of the foam's material properties and cell morphology, such as elastic modulus, yield stress, relative density, cell strut thickness, and cell size. To verify this model, uniaxial compression testing was performed on foam samples. Using the gas foaming/salt leaching method, the samples were prepared by using different foaming parameters such as salt/polymer mass ratio, saturation pressure, and saturation time. The comparisons of theoretical and experimental data demonstrate that the constitutive model using a cubic unit cell accurately describes the behavior of PLGA foams with low relative densities under compression.

1.
Cima
 
L. G.
,
Vacanti
 
J. P.
, and
Vacanti
 
C.
,
1991
, “
Tissue Engineering by Cell Transplantation using Degradable Polymer Substrates
,”
Journal of Biomechanical Engineering
,
113
(
2)
pp.
143
151
.
2.
Putnam
 
A. J.
, and
Mooney
 
D. J.
,
1996
, “
Tissue Engineering using Synthetic Extracellular Matrices
,”
Nature Medicine
,
2
(
7)
pp.
824
826
.
3.
Kim
 
B. S.
,
Nikolovski
 
J.
, and
Bonadio
 
J.
,
1999
, “
Engineered Smooth Muscle Tissues: Regulating Cell Phenotype with the Scaffold
,”
Experimental Cell Research
,
251
(
2)
pp.
318
328
.
4.
Kim
 
B.
, and
Mooney
 
D. J.
,
1998
, “
Engineering Smooth Muscle Tissue with a Predefined Structure
,”
Journal of Biomedical Materials Research
,
41
(
2)
pp.
322
332
.
5.
Ma
 
P. X.
, and
Zhang
 
R.
,
2001
, “
Microtubular Architecture of Biodegradable Polymer Scaffolds
,”
Journal of Biomedical Materials Research
,
56
(
4)
pp.
469
477
.
6.
Karp
 
J. M.
,
Shoichet
 
M. S.
, and
Davies
 
J. E.
,
2003
, “
Bone Formation on Two-Dimensional Poly(DL-Lactide-Co-Glycolide) (PLGA) Films and Three-Dimensional PLGA Tissue Engineering Scaffolds in Vitro
,”
Journal of Biomedical Materials Research
,
64A
(
2)
pp.
388
396
.
7.
Holy
 
C. E.
,
Shoichet
 
M. S.
, and
Davies
 
J. E.
,
2000
, “
Engineering Three-Dimensional Bone Tissue in Vitro using Biodegradable Scaffolds: Investigating Initial Cell-Seeding Density and Culture Period
,”
Journal of Biomedical Materials Research
,
51
(
3)
pp.
376
382
.
8.
Shinoka
 
T.
,
Breuer
 
C. K.
, and
Tanel
 
R. E.
,
1995
, “
Tissue Engineering Heart Valves: Valve Leaflet Replacement Study in a Lamb Model
,”
The Annals of Thoracic Surgery
,
60
(Supplement
3)
pp.
S513–S516
S513–S516
.
9.
Rotter
 
N.
,
Aigner
 
J.
, and
Naumann
 
A.
,
1998
, “
Cartilage Reconstruction in Head and Neck Surgery: Comparison of Resorbable Polymer Scaffolds for Tissue Engineering of Human Septal Cartilage
,”
Journal of Biomedical Materials Research
,
42
(
3)
pp.
347
356
.
10.
Hutmacher
 
D. W.
,
2000
, “
Scaffolds in Tissue Engineering Bone and Cartilage
,”
Biomaterials
,
21
(
24)
pp.
2529
2543
.
11.
Mikos
 
A. G.
,
Sarakinos
 
G.
, and
Leite
 
S. M.
,
1993
, “
Laminated Three-Dimensional Biodegradable Foams for use in Tissue Engineering
,”
Biomaterials
,
14
(
5)
pp.
323
330
.
12.
Mikos
 
A. G.
,
Thorsen
 
A. J.
, and
Czerwonka
 
L. A.
,
1994
, “
Preparation and Characterization of Poly(L-Lactic Acid) Foams
,”
Polymer
,
35
(
5)
pp.
1068
1077
.
13.
Chen
 
G.
,
Ushida
 
T.
, and
Tateishi
 
T.
,
2001
, “
Development of Biodegradable Porous Scaffolds for Tissue Engineering
,”
Materials Science and Engineering C
,
17
(
1–2)
pp.
63
69
.
14.
Sung
 
H.
,
Meredith
 
C.
, and
Johnson
 
C.
,
2004
, “
The Effect of Scaffold Degradation Rate on Three-Dimensional Cell Growth and Angiogenesis
,”
Biomaterials
,
25
(
26)
pp.
5735
5742
.
15.
Wrobel
 
L. K.
,
Fray
 
T. R.
, and
Molloy
 
J. E.
,
2002
, “
Contractility of Single Human Dermal Myofibroblasts and Fibroblasts
,”
Cell Motility and the Cytoskeleton
,
52
(
2)
pp.
82
90
.
16.
Fray
 
T. R.
,
Molloy
 
J. E.
, and
Armitage
 
M. P.
,
1998
, “
Quantification of Single Human Dermal Fibroblast Contraction
,”
Tissue Engineering
,
4
(
3)
pp.
281
291
.
17.
Ibim
 
S. E. M.
,
Uhrich
 
K. E.
, and
Attawia
 
M.
,
1998
, “
Preliminary in Vivo Report on the Osteocompatibility of Poly(Anhydride-Co-Imides) Evaluated in a Tibial Model
,”
Journal of Biomedical Materials Research
,
43
(
4)
pp.
374
379
.
18.
Cao, T., Ho, K. H., and Teoh, S. H., 2003, “Scaffold Design and in Vitro Study of Osteochondral Coculture in a Three-Dimensional Porous Polycaprolactone Scaffold Fabricated by Fused Deposition Modeling,” Tissue Engineering, 9 Suppl 1pp. S103-12.
19.
Guan
 
J.
,
Fujimoto
 
K. L.
, and
Sacks
 
M. S.
,
2005
, “
Preparation and Characterization of Highly Porous, Biodegradable Polyurethane Scaffolds for Soft Tissue Applications
,”
Biomaterials
,
26
(
18)
pp.
3961
3971
.
20.
Sheridan
 
M. H.
,
Shea
 
L. D.
, and
Peters
 
M. C.
,
2000
, “
Bioabsorbable Polymer Scaffolds for Tissue Engineering Capable of Sustained Growth Factor Delivery
,”
Journal of Controlled Release
,
64
(
1–3)
pp.
91
102
.
21.
Coombes
 
A. G.
, and
Heckman
 
J. D.
,
1992
, “
Gel Casting of Resorbable Polymers. 1. Processing and Applications
,”
Biomaterials
,
13
(
4)
pp.
217
224
.
22.
Harris
 
L. D.
,
Kim
 
B.
, and
Mooney
 
D. J.
,
1998
, “
Open Pore Biodegradable Matrices Formed with Gas Foaming
,”
Journal of Biomedical Materials Research
,
42
(
3)
pp.
396
402
.
23.
Mooney
 
D. J.
,
Baldwin
 
D. F.
, and
Suh
 
N. P.
,
1996
, “
Novel Approach to Fabricate Porous Sponges of Poly(D,L-Lactic-Co-Glycolic Acid) without the use of Organic Solvents
,”
Biomaterials
,
17
(
14)
pp.
1417
1422
.
24.
Wierzbicki
 
T.
, and
Doyoyo
 
M.
,
2003
, “
Determination of the Local Stress-Strain Response of Foams
,”
Journal of Applied Mechanics, Transactions ASME
,
70
(
2)
pp.
204
211
.
25.
Li
 
K.
,
Gao
 
X. -.
, and
Roy
 
A. K.
,
2003
, “
Micromechanics Model for Three-Dimensional Open-Cell Foams using a Tetrakaidecahedral Unit Cell and Castigliano’s Second Theorem
,”
Composites Science and Technology
,
63
(
12)
pp.
1769
1781
.
26.
Gibson, L.J., and Ashby, M.F., 1999, “Cellular solids: Structure and properties,” Second Edition, Cambridge University Pres, Cambridge, pp. 175–234.
27.
Wempner, G, 1995, “Mechanics of Solids,” PWS Publishing Co., Boston, pp. 589–595.
This content is only available via PDF.
You do not currently have access to this content.