An acoustic boundary element (BE) model for porous compliant material like the lung parenchyma is developed and validated theoretically and experimentally. This BE model is coupled with a source localization algorithm to predict the position of an acoustic source within a lung phantom. The BE model is also coupled with a finite element (FE) model to simulate the surrounding shell-like chest wall. Experimental studies validate the BE-based source localization algorithm and show that the same algorithm fails if the BE simulation is replaced with a free field assumption that neglects reflections and standing wave patterns created within the finite-size lung phantom. This research is relevant to the development of advanced auscultatory techniques for lung, vascular and cardiac sounds within the torso that utilize multiple noninvasive sensors to create acoustic images of the sound generation and transmission to identify certain pathologies.

1.
Sarvazyan
A.
,
2005
, “
Audible-Frequency Medical Diagnostic Methods: Past, Present and Future
,”
J. Acous. Soc. Amer.
117
,
2586
2586
.
2.
Akay
M
,
Akay
Y
,
Welowitz
W
,
Semmlow
JL
and
Kostis
JB
,
1992
, “
Application of Adaptive Filters to Noninvasive Acoustical Detection of Coronary Occlusions Before and After Angioplasty
,”
IEEE Trans. Biomed. Eng.
39
, pp.
176
183
.
3.
Mansy
HA
,
Balk
R
,
Royston
TJ
and
Sandler
RH
,
2002
, “
Pneumothorax Detection Using Pulmonary Acoustic Transmission Measurements
,”
Med. Biol. Eng. Comput.
40
, pp.
520
525
.
4.
Pasterkamp
H.
,
Consunji-Araneta
R.
,
Oh
Y.
and
Holbrow
J.
,
1997
, “
Chest Surface Mapping of Lung Sounds During Methacholine Challenge
,”
Pediatric Pulmonology
23
, pp.
21
30
.
5.
Kompis M., Pasterkamp H. and Wodicka GR, 2001, “Acoustic Imaging of the Human Chest, 120, pp. 1309–1321.
6.
Benedetto
G.
,
Dalmasso
F.
and
Spagnolo
R.
,
1988
, “
Surface Distribution of Crackling Sounds
,”
IEEE Trans. Biomed. Eng.
35
, pp.
406
412
.
7.
Paciej
R.
,
Vyshedskiy
A.
,
Shane
J.
and
Murphy
R.
,
2003
, “
Transpulmonary Speed of Sound Input Into the Supraclavicular Space
,”
J Appl Physiol
94
, pp.
604
611
.
8.
Royston
T. J.
,
Zhang
X.
,
Mansy
H. A.
and
Sandler
R. H.
,
2002
, “
Modeling Sound Transmission Through the Pulmonary System and Chest with Application to Diagnosis of a Collapsed Lung
,”
J. Acous. Soc. Amer.
111
, pp.
1931
1946
.
9.
Wodicka
G. R.
,
Stevens
K. N.
,
Golub
H. L.
,
Cravalho
E. G.
, and
Shannon
D. C.
,
1989
, “
A Model of Acoustic Transmission in the Respiratory System
,”
IEEE Trans. Biomed. Eng.
36
, pp.
925
34
.
10.
Vovk
I. V.
,
Grinchenko
V. T.
, and
Oleinik
V. N.
,
1995
, “
Modeling the Acoustic Properties of the Chest and Measuring Breath Sounds
,”
Acous. Phys.
41
, pp.
667
76
.
11.
Dunn
F.
and
Fry
W.
,
1961
, “
Ultrasonic Absorption and Reflection by Lung Tissue
,”
Phys. In Med. & Biol.
5
, pp.
401
410
.
12.
Bradley
C. P.
,
Harris
G. M.
and
Pullan
A. J.
,
2001
, “
The Computational Performance of a High-Order Coupled FEM/BEM Procedure in Electropotential Problems
,”
IEEE Trans. on Biomed. Eng.
48
, p.
1238
50
.
13.
Pesola
K.
,
Lotjonen
J.
,
Magnin
I. E.
,
Lauerma
K.
,
Fenici
R.
,
Katila
T.
,
2000
, “
the Effect of Geometric and Topologic Differences in Boundary Element Models on Magnetocardiographic Localization Accuracy
IEEE Trans. on Biomed. Eng.
47
, pp.
1237
47
.
14.
Visible Human Project. http://www.nlm.nih.gov/research/visible/visible_human.html.
15.
Burton
A. J.
and
Miller
G. F.
,
1971
, “
The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary Value Problems
,”
Proc. Royal Soc. London
,
A32
, pp.
201
210
.
16.
Kirkup S., 1998, The Boundary Element Method in Acoustics, Integrated Sound Software, West Yorkshire.
17.
Kirkup
S. M.
,
1998
, “
Fortran Codes for Computing Discrete Helmholtz Integral Operators
,”
Adv. Compute Math
.
9
pp.
391
409
.
18.
Amini S., Harris P. J. and Wilton D. T., 1992, Coupled Boundary and Finite Element Methods for the solution of the dynamic fluid-structure interaction problem, Lecture notes in engineering, Springer-Verlag, Berlin.
19.
Hinich
M. J.
and
Sullivan
E. J.
,
1989
, “
Maximum-Likelihood Passive Localization Using Mode Filtering
,”
J. Acoust. Soc. Am.
,
85
, pp.
214
219
.
20.
Harrison
B. F.
,
Vaccaro
R. J.
and
Tufts
D. W.
,
1995
, “
Source Localization in an Acoustic Waveguide with Uncertain Sound Speed
,”
IEEE Trans. On Acoust., Speech, and Signal Processing
,
5
, pp.
3115
3118
.
21.
Harrison
B. F.
,
2000
, “
An Inverse Problem in Underwater Acoustic Source Localization: Robust Matched-Field Processing
,”
Inv. Prob.
16
, pp.
1641
1654
.
22.
Collison
N. E.
and
Dosso
S. E.
,
2000
, “
Regularized Matched-Mode Processing for Sound Localization
,”
J. Acoust. Soc. Am.
,
107
, pp.
3089
3099
.
23.
Krim
H.
and
Viberg
M.
,
1996
, “
Two Decades of Array Signal Processing Research
IEEE Sig. Proc. Mag.
13
, pp.
67
94
.
This content is only available via PDF.
You do not currently have access to this content.