Accurate interpretation of functional brain images requires knowledge of the relationship between neurons and their supporting cells and vasculature. Our understanding of this complex and dynamic system would improve if we measure multiple aspects of brain function simultaneously. We have developed a semi-transparent electrode array which allows for concurrent multi-site electrophysiological recording and high-resolution optical imaging of intrinsic signals. The 8-channel electrode array is fabricated on a transparent glass substrate with platinum recording surfaces. We map stimulus-induced field potentials (evoked potentials) and changes in cerebral blood volume in rat somatosensory cortex. We also examine the evolution of these responses during the neuro-pathological state of cortical spreading depression. We have developed a planar multi-electrode array that is fully compatible with Optical imaging of Intrinsic Signals. It provides a sensitive and reliable tool to use in the study of neurovascular coupling in brain activation.

1.
Toga, A.W. and Mazziotta, J.C., 2002, Brain mapping: the methods, Academic Press, Boston.
2.
Frostig
R. D.
,
Lieke
E.
,
Ts’o
D. Y.
, and
Grinvald
A.
,
1990
, “
Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals
,”
Proc. Natl. Acad. Sci. U.S.A.
,
87
(
16)
, pp.
6082
6086
.
3.
Dunn
A. K.
,
Devor
A.
,
Bolay
H.
,
Andermann
M.
,
Moskowitz
M.
,
Dale
A.
, and
Boas
D. A.
,
2003
, “
Simultaneous imaging of total cerebral hemoglobin concentration, ozygenation, and blood flow during functional activation
,”
Opt. Lett.
,
28
(
1)
, pp.
28
30
.
4.
Malonek
D.
and
Grinvald
A.
,
1996
, “
Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping
,”
Science
,
272
(
5261)
,
551
554
.
5.
Grinvald
A.
,
Lieke
E.
,
Frostig
R. D.
,
Gilbert
C.
, and
Wiesel
T. N.
,
1986
, “
Functional architecture of cortex revealed by optical imaging of ntrinsic signals
,”
Nature
,
324
(
6095)
, pp.
361
364
.
6.
Nemoto
M.
,
Sheth
S.
,
Guiou
M.
,
Pouratian
N.
,
Chen
J. W. Y.
,
Toga
A. W.
,
2004
, “
Functional Signal- and Paradigm-Dependent Linear Relationships between Synaptic Activity and Hemodynamic Responses in Rat Somatosensory Cortex
,”
J. Neurosci
.,
25
(
15)
, pp.
3850
3861
.
7.
Sheth
S.
,
Nemoto
M.
,
Guiou
M.
,
Walker
M.
, and
Toga
A. W.
,
2005
, “
Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity
,”
J. Cereb. Blood Flow Metab.
,
25
(
7)
, pp.
830
841
.
8.
Owens
A. L.
,
Denison
T. J.
,
Versnel
H.
,
Rebbert
M.
,
Peckerar
M.
,
Shamma
S. A.
,
1995
, “
Multi-electrode array for measuring evoked potentials from surface of ferret primary auditory cortex
,”
J. Neurosci. Methods
,
58
, pp.
209
220
.
9.
Rousche
P. J.
,
Pellinen
D.
,
Pivin
D.
,
Williams
J.
,
Vetter
R.
, and
Kipke
D.
,
2001
, “
Flexible Polyimide-based intracortical electrodes arrays with bioactive capability
,”
IEEE Trans. Biomed. Eng.
,
48
(
3)
, pp.
361
371
.
10.
Rousche
P. J.
,
Petersen
R.
,
Battiston
S.
,
Gianotta
S.
, and
Diamond
M. E.
,
1991
, “
Examination of the spatial and temporal distribution of sensory cortica activity using a 100-electrode array
,”
J. Neurosci. Methods
,
90
(
1)
, pp.
57
66
.
11.
Takahashi
H.
,
Ejiri
T.
,
Nakao
M.
,
Nakamura
N.
,
Kaga
K.
, and
Herve
T.
,
2003
, “
Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials
,”
IEEE Trans. Biomed. Eng.
,
50
(
4)
, pp.
510
516
.
12.
Hoogerwerf
A.
, and
Wise
K. D.
,
1994
, “
A three-dimensional microelectrode array for chronic neural recording
,”
IEEE Trans. Biomed. Eng.
,
41
(
12)
, pp.
1136
1146
.
13.
Morin
F.
,
Takamura
Y.
, and
Tamiya
E.
,
2005
, “
Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives
.”
J. Biosci. Bioeng.
,
100
(
2)
, pp.
131
134
.
14.
Hoogerwerf
A.
, and
Wise
K. D.
,
1994
, “
A three-dimensional microelectrode array for chronic neural recording
,”
IEEE Trans. Biomed. Eng.
,
41
(
12)
, pp.
1136
1146
.
15.
Guiou
M.
,
Sheth
S.
,
Nemoto
M.
,
Walker
M.
,
Pouratian
N.
,
Ba
A.
, and
Toga
A. W.
,
2005
, “
Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling
,”
J. Biomed. Opt.
,
10
(
1)
,
011004
011004
.
16.
Lea˜o
A.
,
1944
a, “
Spreading depression of activity in the cerebral cortex
,”
J. Neurophysiol.
,
7
, pp.
359
390
.
17.
Lea˜o
A.
,
1944
b, “
Pial circulation and spreading depression of activity in the cerebral cortex
,”
J. Neurophysiol
.,
7
, pp.
391
396
.
18.
Sanchez-Del-Rio
M.
,
Reuter
U.
, and
Moskowitz
M. A.
,
2006
, “
New insights into migraine pathophysiology
,”
Curr. Opin. Neurol
,
19
(
3)
, pp.
294
298
.
19.
Lauritzen
M.
,
2001
, “
Cortical spreading depression in migraine
,”
Cephalalgia
,
21
(
7)
, pp.
757
60
. Review.
20.
Fabricius
M.
,
Fuhr
S.
,
Bhatia
R.
,
Boutelle
M.
,
Hashemi
P.
,
Strong
A.
, and
Lauritzen
M.
,
2006
, “
Cortical spreading depression and per-infarct depolarization in acutely injured human cerebral cortex
,”
Brain
,
129
(
3)
, pp.
778
790
.
21.
Koroleva
V. I.
, and
Bures
J.
,
1980
, “
Blockade of cortical spreading depression in electrically and chemically stimulated areas of cerebral cortex in rats
,”
Electroencephalogr Clin. NeuroPhysiol
.,
48
(
1)
, pp.
1
15
.
22.
Lauritzen
M.
, and
Fabricius
G. A.
,
1996
, “
Real time laser-Doppler perfusion imaging of cortical spreading depression in rat neocortex
,”
NeuroReport
,
6
(
9)
, pp.
1271
1273
.
23.
O’Farrell
A.
,
Rex
D.
,
Muthialu
A.
,
Pouratian
N.
,
Wong
G. K.
,
Cannestra
A.
,
Chen
J. W. Y.
, and
Toga
A. W.
, “
Characterization of optical intrinsic signals and blood volume during cortical spreading depression
,”
Neuroreport
,
11
(
10)
, pp.
2121
2125
.
24.
Ba
A.
,
Guiou
M.
,
Pouratian
N.
,
Muthialu
A.
,
Rex
D.
,
Cannestra
A.
,
Chen
J. W. Y.
, and
Toga
A. W.
,
2002
, “
Multi-wavelength optical intrinsic signal imaging of cortical spreading depression
,”
J. Neurophysiol
.,
88
, pp.
2726
2735
.
25.
Lauritzen
M.
,
2001
, “
Relationship of spikes, synaptic activity, and local changes in blood flow
.”
J. Cereb. Blood Flow Metab.
,
21
, pp.
1367
1383
.
26.
Ngai
A. C.
,
Jolley
M. A.
,
D’Ambrosio
R.
,
Meno
J. R.
,
Winn
H. R.
,
1999
, “
Frequency-dependant changes in cerebral blood flow and evoked potential during somatosensory stimulation in rat
,”
Brain Research
,
837
, pp.
221
228
.
27.
Dawson
D.
and
Killackey
H.
,
1987
, “
The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat
,”
J. Comp. Neurol.
,
256
(
2)
, pp.
246
256
.
28.
Pearson
P.
,
Li
C. X.
,
Chappel
T.
, and
Waters
R.
,
2003
, “
Delayed reorganization of the shoulder representation in forepaw barrel subfield (FBS) in first somatosensory cortex (SI) following forelimb deafferentation in adult rats
,”
Exp. Brain Res.
,
153
(
1)
, pp.
100
112
.
This content is only available via PDF.
You do not currently have access to this content.