For the reason that flow expansion model (developed in our previous work) for evaluating mass transfer during droplet formation involves with manifest hydrodynamic aspects, in this research computational simulation of this phenomenon was done for characterization of hydrodynamics effects on the mass transfer during droplet formation. For this purpose, an Eulerian volume tracking computational code based on volume of fluid (VOF) method was developed to solve the transient Navier-Stokes equations for the axisymmetric free-boundary problem of a Newtonian liquid that is dripping vertically and breaking as drops into another immiscible Newtonian fluid. The effects of hydrodynamics effects on the mass transfer during droplet formation have been discussed in the three features, including: 1- The intensity of the interaction between two phases 2-The strength and positions of the main vorticities on the nozzle tip 3-The effects of local interfacial vorticities (LIV). These features are considered to explain the complexities of drop formation mass transfer between Ethyl Acetoacetate (presaturated with water) as an organic dispersed phase and water as continuous phase for two big and small nozzle sizes (0.023 and 0.047 cm, ID) which have different level of mass transfer rate particularly in first stages of formation time.

1.
Barhate R.S., N.D. Ganapathi Patil, Raghavarao, Srinivas and K.S.M.S. “Drop Formation in Aqueous Two-Phase Systems”, Journal of Chromatography A, pp. 197–206, (2004).
2.
Bashforth, F., and H., Adams, “An attempt to test theories of capilary action,” Cambridge Univ. Press, London, (1883).
3.
Chazal L. E. M. and J. T. Ryan, “Formation of Organic Drops in Water,” AIChE J., vol. 17, No. 5, (1971).
4.
Lohnstein
T.
,
Ann. Physik
,
20
(
1906
)
237
237
.
5.
Clift, R., J. R. Grace, and M. E. Weber, “Bubbles, Drops and Particles,” New York: Academic Press, (1978).
6.
Coulson
J. M.
and
Skinner
S. J.
, “
The mechanism of liquid-liquid extraction across stationary and moving interfaces
, part I. Mass transfer into single dispersed drops”,
Chem. Eng. Sci.
, Vol.
1
, No.
5
, pp.
197
211
,
1952
7.
Ghia
U.
,
Ghia
K. N.
and
Shin
C. T.
(
1982
), “
High-Resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method
”,
Journal of Computational Physics
, Vol.
48
, pp.
387
411
.
8.
Gruen M., Hampe M. J., On the Generation of Vorticity at Liquid-Liquid Interfaces. International Center for Heat and Mass Transfer, LIft’97, International Symposium On Liquid-Liquid Two-Phase Flow and Transport Phenomena 3 7 November 1997, Antalya, Turkey.
9.
Harvie
D. J. E.
,
Davidson
M. R.
, and
Rudman
M.
An analysis of parasitic current generation in volume of fluid simulations
Anziam J.
46
(E) pp
C133–C149
C133–C149
,
2005
.
10.
Harkins
W. D.
and
Humphrey
E. C.
,
J., Am. Chem. Soc.
,
38
,
240
240
, (
1916
).
11.
Harkins
W. D.
and
Brown
F. E.
,
J. Am. Chem. Soc.
,
38
,
246
246
, (
1916
).
12.
Hayworth
C.
and
Treybal
R.
, “
Drop Formation in Two-Liquid-Phase Systems
,”
Industrial and Engineering Chemistry
,
42
:
1174
1181
(
1950
).
13.
Heertjes
P. M.
,
De-Nie
L. H.
and
De-Vries
H. J.
, “
Drop Formation in Liquid-Liquid Systems-I Prediction of Drop Volumes at Moderate Speed of Formation
”,
Chem. Eng. Sci.
, Vol.
26
, pp.
441
449
, (
1971
a).
14.
Heertjes
P. M.
,
De-Nie
L. H.
and
De-Vries
H. J.
, “
Drop Formation in Liquid-Liquid Systems-II Testing of the Considerations Given in Part I, for Drop Volumes Below the Jetting Velocity, A Criterion for the Jetting Velocity
,”
Chem. Eng. Sci.
, Vol.
26
, pp.
441
449
, (
1971
b).
15.
Heideger W. J. and M. W. Wright, “Liquid Extraction During Drop Formation: Effect of Formation Time,” AIChE J. Vol. 32, No. 8. (1986).
16.
Homma S., G. Tryggvason, J. Koga, and S. Matsumoto, “Formation of a Jet in Liquid-Liquid System and Its Breakup into Drops”, ASME Fluids Engineering Division Summer Meeting, Washington DC, (1998).
17.
Homma S., J. Koga, S. Matsumoto, and G. Tryggvason, “Numerical Investigation of a Laminar Jet Breakup into Drops in Liquid-Liquid Systems,” Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, (2000).
18.
Javadi A. and D. Bastani, “Estimation of Mass Transfer during Drop Formation: New Flow Expansion Model,” ASME International Mechanical Engineering Congress, Paper No: IMECE2004-62443 California, (2004).
19.
Javadi A. and Bastani D. “Mass transfer during droplet formation on the nozzle: new flow expansion model”, (In Press) AIChE Journal, 2005.
20.
Lee
Y. L.
, “
Surfactants Effects on Mass Transfer during Drop-Formation and drop Falling stages
,”
AIChE J.
Vol.
49
, No.
7
, pp.
1859
1859
, (
2003
).
21.
Liang
T. B.
and
Slater
M. J.
, “
Liquid-Liquid Extraction Drop Formation: Mass Transfer and the Influence of Surfactant
,”
Chem. Eng. Sci.
, Vol.
45
, No.
1
,
97
105
, (
1990
).
22.
Meister
B. J.
, and
Scheele
G. F.
, “
Generalized solution of the Tomotika stability analysis for a cylindrical jet
,”
AIChE J.
,
13
,
682
682
(
1967
).
23.
Meister
B. J.
, and
Scheele
G. F.
, “
Prediction of jet length in immiscible liquid systems
,”
AIChE J.
,
15
,
689
689
(
1969
a).
24.
Meister
B. J.
, and
Scheele
G. F.
, “
Drop formation from cylindrical jets in immiscible liquid systems
AIChE J.
,
15
,
700
700
(
1969
b).
25.
Miller
R.
and
Fainerman
V. B.
,
The drop volume technique, monograph in “Drops and Bubbles in Interfacial research
”, in “
Studies of Interface Science
”, D. Mo¨bius and R. Miller (Eds.), Vol.
6
, Elsevier, Amsterdam,
1998
, p.
139
186
.
26.
Nichols B. D., Hirt C.W., and Hotchkiss R.S., “SOLA-VOF: A solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries”, Los Alamos National Laboratory, LA- 8355, 1980.
27.
Null H. R. and H. F. Johnson, “Drop Formation in Liquid-Liquid Systems from Single Nozzle,” AIChE J, Vol. 4, No. 3, (1958).
28.
Ohta
M.
,
Yamamoto
M.
and
Suzuki
M.
, “
Numerical Analysis of Single Drop Formation process Under Pressure Pulse Condition
,”
Chem. Eng. Sci.
Vol.
50
, No.
18
, pp.
2923
2931
, (
1999
).
29.
Petera
J.
,
Weatherley
L. R.
, “
Modeling of Mass Transfer from Falling droplets
,”
Chem. Eng. Sci.
, Vol.
56
, pp.
4929
4947
, (
2001
).
30.
Popovich
A. T
,
Jervis
R. E.
and
Trass
O
., “
Mass Transfer during Single Drop Formation
,”
Chem. Eng. Sci.
,
19
,
357
357
, (
1964
).
31.
Rajan S. M. and W. J. Heideger, “Drop Formation Mass Transfer,” AIChE J, Vol. 17, No. 1, (1971).
32.
Rao
E. V. L. N.
,
Kumar
R.
, and
Kuloor
N. R.
, “
Drop Formation Studies in Liquid-Liquid Systems
”,
Chem. Eng. Sci.
, Vol.
21
, pp.
867
880
,
1966
.
33.
Richards J.R., “Fluid Mechanics of Liquid-Liquid systems” Ph.D. Dissertation, University of Delaware, USA, (1994).
34.
Richards
J. R.
,
Beris
A. N.
, and
Lenhoff
A. M.
, “
Drop Formation in Liquid-Liquid Systems Before and After Jetting
”,
Pysics of Fluid
, Vol.
7
, No.
11
, pp.
2617
2630
”, (
1995
).
35.
Scheele
G. F.
, and
Meister
B. J.
, “
Drop formation at low velocities in liquid-liquid systems
,”
AIChE J.
,
14
,
9
9
(
1968
).
36.
Skelland
A. H. P.
and
Minhas
S. S.
, “
Dispersed Phase Mass Transfer during Drop Formation And Coalescence in Liquid-Liquid Extraction
”.
AIChE J.
, Vol.
17
, No.
6
, pp.
1316
1324
, (
1971
).
37.
Slater
M. J.
,
Baird
M. H.
, and
Liang
T. B.
, “
Drop Phase Mass Transfer Coefficients for Liquid-Liquid Systems and the Influence of Packings
,”,
Chem. Eng. Sci.
, Vol.
43
, No.
2
, pp.
223
245
, (
1988
).
38.
Tate
T. T.
,
Phil. Mag.
,
27
,
176
176
,
1864
.
39.
Unverdi, S.O. and G. Tryggvason, “A front Tracking Method for Viscous, Incompressible Multi-fluid Flows,” Journal of Computational Physics, No. 100, p 25–37, 1992.
40.
Walia
D. S.
and
Vir
D.
, “
Interphase Mass Transfer during Drop or Bubble Formation
,”
Chem. Eng. Sci.
, Vol.
31
, pp.
525
533
(
1976
a).
41.
Walia
D. S.
, and
Vir
D.
, “
Extraction from Single Froming Drops
,”
The Chem. Eng. J.
, Vol.
12
, pp.
133
141
, (
1976
b).
42.
Zhang
X.
, “
Dynamics of Drop Formation in Viscous Flows
,”
Chem. Eng. Sci
, Vol.
54
, pp.
1759
1774
, (
1999
).
43.
Zimmermann
V.
,
Halwachs
W.
, and
Schugerl
K.
,
Mass Transfer Investigations during Droplet Formation by Means of a modified Liquid Scintillation Technique
,”
Chem. Engng Commun.
7
,
95
112
, (
1980
).
This content is only available via PDF.
You do not currently have access to this content.