The recent preliminary acoustic measurements of single vapor bubbles on a heated platinum wire, combined with high-speed digital photography, provided significant information for the vapor bubble dynamics such as growth, departure, collapse or coalescence with a previous bubble. Furthermore, under a given condition, the numerous consecutive single bubbles consistently showed almost identical waveforms, even at different times. This surprising result indicates that the phenomenon is not a chaotic process, but an orderly mathematical process. The deceleration of a growing bubble following the rapid initial growth was apparently detected by the acoustic emissions as a negative acoustic pressure. This is believed to be a new observation and not seen in gas bubbles. Some successive bubbles clearly underwent the spherical harmonics and compared well with a series of photographs. These results are in contrast with the previous indeterminate measurements on the sound intensity and frequency in boiling in the literature. The information for vapor bubble dynamics will be supplementary to the gas bubble dynamics such as cavitation, sonoluminescence, etc. Visual observations will be valuable for the mathematicians who study the spherical harmonics analytically. Also, the technique and information may be applicable to the fields of science and engineering associated with vapor bubbles motion including boiling.

1.
Aljishi
S.
and
Tatarkiewicz
J.
,
1991
, “
Why does Heating Water in a Kettle Produce Sound?
”,
Am. J. Phys.
,
59
(
7)
,
628
632
.
2.
J. Aoki and J.R. Welty, 1970, “Frequrncy Distribution of Boiling_Generated Sound”, J. Heat Transfer (Aug. 1970), pp542–546.
3.
Bode
A.
and
Schroder
J. J.
,
2000
, “
Pressure Pulse Generation by Single Bubbles in Subcooled Pool Boiling
”,
Multiphase Science and Technology
, Vol.
12
, Nos.
3 & 4
, pp
85
101
.
4.
L. A. Crum and S. Cordry, “Single-Bubble Sonoluminescence”, Bubble Dynamics and Interface Phenomena, J. R. Blake et al. (eds.), Kluwer Academic Publishers, Printed in the Netherlands, pp287–297.
5.
Dorofeev
B. M.
,
1985
, “
Acoustic Phenomena in Boiling
”,
High Temperature
, Vol.
23
, No.
2
, pp
479
482
.
6.
H. M. Fitzpatric, 1958, Cavitation Noise, Second Symposium on Naval Hydrodynamics, Washington D.C., pp201–205.
7.
F. R. Gilmore, 1952, The growth or collapse of a spherical bubble in a viscous compressible liquid, Proceedings of the Heat Transfer and Fluid Mechanics Institute held at the University of California at Los Angeles (1952).
8.
Hao
Y.
and
Prosperetti
A.
,
1999
,
The dynamics of vapor bubbles in acoustic pressure fields
,
Physics of Fluids
, Vol.
11
, No.
8
, pp
2008
2019
.
9.
Keller
J. B.
and
Miksis
M. J.
,
1980
,
Bubble oscillations of large amplitude
,
J. Acoust. Soc. Am.
Vol.
68
, pp
628
628
.
10.
Kichigin
A. M.
and
Povsten
S. G.
,
1973
, “
Study of Acoustic Phenomena Accompanying Changes in Pool-Boiling Modes
”,
HEAT TRANSFER-Soviet Research
, Vol.
5
No.
1
,
121
126
.
11.
W. Lauterborn and A. Philipp, 1994, “Approaching Bubble Dynamics with Lasers, Holography and Computers”, Bubble Dynamics and Interface Phenomena, J. R. Blake et al. (eds.), Kluwer Academic Publishers, Printed in the Netherlands, pp 299–310.
12.
T.G. Leighton, 1994, “Acoustic Bubble”, Academic Press, 1994.
13.
H. S. Lee, 1993, “Vapor bubble dynamics in microgravity”, Ph.D. Thesis, The University of Michigan.
14.
Lee
H. S.
and
Merte
H.
,
1996
a, “
Spherical Vapor Bubble Growth in Uniformly Superheated Liquids
”,
Int. J. Heat Mass Transfer
, Vol.
39
, No.
12
pp.
2427
2447
.
15.
Lee
H. S.
and
Merte
H.
,
1996
b, “
Hemispherical Vapor Bubble Growth in Microgravity: Experiments and Model
”,
Int. J. Heat Mass Transfer
, Vol.
39
, No.
12
, pp.
2449
2461
.
16.
Likhterov
L.
,
1993
, “
High Frequency Asymptotics of Acoustical Nucleate Pool Boiling Noise Spectrum in Compressible viscous Liquids
”,
Int. J. Heat Mass Transfer
, Vol.
36
, pp
3931
3935
.
17.
Mao
Y.
,
Crum
L. A.
, and
Roy
R. A.
,
1995
, “
Nonlinear Coupling between the Surface and Volume Modes of an Oscillating Bubble
”,
J. Acoust. Soc. Am.
98
(
5)
,
2764
2771
.
18.
Matula
T. J.
,
Hallaj
I. M.
,
Cleveland
R. O.
, and
Crum
L. A.
,
1998
,
The acoustic emissions from single-bubble sonoluminescence
,
J. Acoust. Soc. Am.
, Vol.
103
, No.
3
, March 1998, pp
1377
1382
.
19.
Minnaert
M.
,
1933
,
On musical air-bubbles and sounds of running water
,
Phil. Mag.
1933, Vol.
16
, pp
235
248
.
20.
Nesis
Y. I.
,
1991
, “
Growth of Vapor Bubbles and the Acoustic Noise of a Boiling Liquid
”,
Fluid Mechanics-Soviet research
, Vol.
20
, No.
2
, pp
108
112
.
21.
H. Nishihara and Y. Bessho, 1974, Structure of acoustic noise spectra in subcooled pool boiling, ASME Publication, 74-WA/HT-31 (1974).
22.
Ornatskiy
A. P.
and
Sharayevskiy
I. G.
,
1977
,
Acoustic phenomena accompanying boiling of water in annuli under forced convection
,
HEAT TRANSFER Soviet-Research
, Vol.
9
, No.
3
, May-June 1997, pp
28
34
.
23.
Osborne
M. F. M.
and
Holland
F. M.
,
1947
, “
The Acoustical Concomitants of Cavitation and Boiling Produced by a Hot Wire
”,
J. Acoust. Soc. Am.
19
(
1)
,
13
29
.
24.
Ponter
A. B.
and
Haigh
C. P.
,
1969
, “
Sound Emission and Heat Transfer in Low Pressure Pool Boiling
”,
Int. J. Heat Mass Transfer
, Vol.
12
, pp
413
428
.
25.
Prosperetti
A.
and
Lezzi
A.
,
1986
,
Bubble dynamics in a compressible liquid
, Part I. First -order theory,
J. Fluid Mech.
Vol
185
, pp
286
286
.
26.
Rayleigh
Lord
,
1917
,
Phil. Mag.
,
34
,
94
98
27.
O. Reynolds, 1901, Papers on Mechanical and Physical Subjects (Cambridge U. P., Cambridge), Vol.2, pp578–587.
28.
G. E. Robinson, F. W. Schmidt, H. R. Block, and G. Green, 1974, “An Experimental Determination of Isolated Bubble Acoustic in a Nucleate Boiling System”, Proc. 5th Int. Heat Transfer Conference, September 3–7, 1974, Tokyo, pp75–79.
29.
Westwater
J. W.
,
Lowery
A. J.
and
Pramuk
F. S.
,
1955
,
Sound of Boiling, Science
, Vol.
122
, pp
332
333
.
This content is only available via PDF.
You do not currently have access to this content.