Simulations of gas-solid fluidized beds have been carried out using a hybrid simulation method, which couples the discrete element method (DEM) for particle dynamics with the ensemble-averaged two-fluid (TF) equations for the fluid phase. The coupling between the two phases is modeled using an interphase momentum transfer term. The results of the hybrid TF-DEM simulations are compared to experimental data and two-fluid model simulations. It is found that the TF-DEM simulation is capable of predicting general fluidized bed dynamics, i.e., pressure drop across the bed and bed expansion, which are in agreement with experimental measurements and two-fluid model predictions. In addition, the TF-DEM model demonstrates the capability to capture more heterogeneous structural information of the fluidized beds than the two-fluid model alone. The microstructures in fluidized beds are analyzed and the implications to kinetic theory for granular flows are discussed. However, the TF-DEM simulations depend on the form of the interphase momentum transfer model, which can be computed in terms of averaged or instantaneous particle quantities. Various forms of the interphase momentum transfer model are examined, and their suitability to the hybrid TF-DEM simulation approach is evaluated.

1.
Curtis
J. S.
, and
van Wachem
B.
,
2004
. “
Modeling particle-laden flows: A research outlook
”.
AIChE Journal
,
50
(
11)
, pp.
2638
2645
.
2.
Jackson, R., 2000. The Dynamics of Fluidized Particles. Cambridge University Press.
3.
Gidaspow
D.
,
Jung
J.
, and
K.
S. R.
,
2004
. “
Hydrodynamics of fluidization using kinetic theory: an emerging paradigm 2002 Flour-Daniel lecture
”.
Powder Technology
,
148
, pp.
123
141
.
4.
Agrawal
k.
,
Loezos
P. N.
,
Syamlal
M.
, and
Sundaresan
S.
,
2001
. “
The role of meso-scale structures in rapid gas-solid flows
”.
J. Fluid Mech.
,
445
, pp.
151
185
.
5.
Rahman
K.
, and
Campbell
C. S.
,
2002
. “
Particle pressures generated around bubbels in gas-fluidized beds
”.
J. Fluid Mech.
,
455
, pp.
102
127
.
6.
Tsuji
Y.
,
Kawaguchi
T.
, and
Tanaka
,
1993
. “
Discrete particle simulation of two-dimensional fluidized bed
”.
Powder Technology
,
77
, pp.
79
87
.
7.
Hoomans
B. P.
,
Kuipers
J. A.
,
Briels
W. J.
, and
van Swaaij
W. P.
,
1996
. “
Discrete particle simulation of bubble ans slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach
”.
Chemical Engineering Science
,
51
(
1)
, pp.
99
118
.
8.
Xu
B. H.
, and
Yu
A. B.
,
1997
. “
Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics
”.
Chemical Engineering Science
,
52
(
16)
, pp.
2785
2809
.
9.
Kafui
K. D.
,
Thornton
C.
, and
Adams
M. J.
,
2002
. “
Discrete particle-continuum fluid modelling of gas-solid fluidised beds
”.
Chemical Engineering Science
,
57
, pp.
2395
2410
.
10.
Syamlal, M., Rogers, W., and O’Brien, T., 1993. MFIX documentation: Theory guide. Technical Note DOE/METC-95/1013, NTIS/DE95000031, National Energy Technology Laboratory, Department of Energy. See also URL http://www.mfix.org.
11.
Syamlal, M., 1987. The particle-particle drag term in a multiparticle model of fluidization. Topical report DOE/MC/21353–2373, NTIS/DE87006500, National Energy Technology Laboratory, Department of Energy.
12.
Cundall
P. A.
, and
Strack
D. L.
,
1979
. “
A discrete numerical model for granular assemblies
”.
Ge`otechnique
,
29
, p.
47
47
.
13.
Silbert
L. E.
,
Ertas
D.
,
Grest
G. S.
,
Halsey
T. C.
,
Levine
D.
, and
Plimpton
S. J.
,
2001
. “
Granular flow down an inclined plane: Bagnold scaling and rheology
”.
Physical Review E
,
64
(
5)
, p.
051302
051302
.
14.
Boyalakuntla, D., 2003. Simulation of Granular and Gas-Solid Flows Using Discrete Element Method. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania.
15.
Anderson
T. B.
, and
Jackson
R.
,
1967
. “
A fluid mechanical description of fluidised beds
”.
Industrial and Engineering Chemistry Fundamental
,
6
, pp.
527
539
.
16.
Ergun
S.
,
1952
. “
Fluid flow through packed columns
”.
Chemical Engineering Progress
,
48
, p.
89
89
.
17.
Wen, C. Y., and Yu, Y. H., 1966. “Mechanics of fluidization”. In Fluid particle technology, vol. 62 of Chemical Engineering Progress Symposium Series. American institute of chemical engineers, pp. 100–111.
18.
Syamlal, M., 1998. MFIX documentation: Numerical technique. Technical Note DOE/MC31346-5824, NTIS/DE98002029, National Energy Technology Laboratory, Department of Energy. See also URL http://www.mfix.org.
19.
Goldschmidt
M. J.
,
Link
J. M.
,
Mellema
S.
, and
Kuipers
J. A.
,
2003
. “
Digital image analysis measurements of bed expansion and segregation dynamics in dense gas-fluidised beds
”.
Powder Technol.
,
138
, pp.
135
159
.
20.
Sun
J.
, and
Battaglia
F.
,
2006
. “
Hydrodynamic modeling of particle rotation for segregation in bubbling gas-fluidized beds
”.
Chemical Engineering Science
,
61
(
5)
, pp.
1470
1479
.
21.
Sun, J., Battaglia, F., and Subramaniam, S., 2006. “Dynamics and structures of segregation in dense, vibrating granular beds”. Phys. Rev. E. In preparation.
22.
Goldschmidt, M., 2001. Hydrodynamic Modelling of Fluidised Bed Spray Granulation. Ph.D. Thesis, Twente University, Netherlands.
23.
Sundaresan
S.
,
2000
. “
Modeling the hydrodynamics of multiphase flow reactors: Current status and challenges
”.
AIChE Journal
,
46
(
6)
, pp.
1102
1105
.
This content is only available via PDF.
You do not currently have access to this content.