Large eddy simulations of turbulent flows are known to suffer from two separate error sources: the subgrid stress model and the numerical discretization scheme. In general, the two sources of error cannot be separately quantified for finite-difference/finite-volume CFD simulations. The motivation of this paper lies in the desire to determine optimum combinations of currently available subgrid stress models and numerical schemes for use in large eddy simulations of complex flows. Error assessments for large eddy simulation of turbulent fluid flow are presented. These assessments were carried out using pseudospectral simulation techniques in order to isolate finite-differencing and modeling errors by explicitly adding numerical derivative error terms to the simulations and analyzing their effect. Results from several combinations of subgrid stress model and spatial discretization scheme are presented. Simulations were performed for decaying isotropic turbulence on both 323 and 643 grids. Results were compared in terms of spectral energy distributions at succeeding time intervals. For verification, the pseudo-spectral results were compared to LES solutions obtained from a commercially available finite-volume flow solver (FLUENT), and comparisons were made in terms of energy decay rates, numerical versus subgrid stress dissipation levels, and computed energy spectra. The results highlight the interaction between subgrid stress model and discretization scheme. The results also indicate that certain combinations of model and numerical scheme may be more appropriate for finite-volume LES than others.
Skip Nav Destination
ASME 2006 International Mechanical Engineering Congress and
Exposition
November 5–10, 2006
Chicago, Illinois, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4770-5
PROCEEDINGS PAPER
Assesment of Modeling and Discretization Error in Finite-Volume Large Eddy Simulations Available to Purchase
Adetokunbo A. Adedoyin,
Adetokunbo A. Adedoyin
Mississippi State University
Search for other works by this author on:
D. Keith Walters,
D. Keith Walters
Mississippi State University
Search for other works by this author on:
Shanti Bhushan
Shanti Bhushan
Mississippi State University
Search for other works by this author on:
Adetokunbo A. Adedoyin
Mississippi State University
D. Keith Walters
Mississippi State University
Shanti Bhushan
Mississippi State University
Paper No:
IMECE2006-14918, pp. 379-388; 10 pages
Published Online:
December 14, 2007
Citation
Adedoyin, AA, Walters, DK, & Bhushan, S. "Assesment of Modeling and Discretization Error in Finite-Volume Large Eddy Simulations." Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Fluids Engineering. Chicago, Illinois, USA. November 5–10, 2006. pp. 379-388. ASME. https://doi.org/10.1115/IMECE2006-14918
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Dynamic Subgrid-Scale Modeling for Large-Eddy Simulations in Complex Topologies
J. Fluids Eng (September,2001)
Analysis of Aerodynamic Loads on Heliostats at Operation Position Using Large Eddy Simulation and the Consistent Discrete Random Flow Generation Method
J. Sol. Energy Eng (August,2024)
Index of Resolution Quality for Large Eddy Simulations
J. Fluids Eng (September,2005)
Related Chapters
CFD Simulations of a Mixed-flow Pump Using Various Turbulence Models
Mixed-flow Pumps: Modeling, Simulation, and Measurements
A Novel Approach for LFC and AVR of an Autonomous Power Generating System
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine