Vascular techniques have been used for curing the aneurysm, but the reason for the occurrence of aneurysms can not be known using these techniques. These techniques are usually used for preventing a significant situation such as rupture of an aneurysm. In our study, blood flow effects with or without vascular techniques inside an aneurysm were analyzed with computational fluid dynamics (CFD). Important hemodynamic quantities like wall shear stress and pressure in vessel are difficult to measure in-vivo. Blood flow is assumed to be Newtonian fluid. But it actually consists of platelets, so it is also considered a non-Newtonian fluid in this study. Results of the numerical model were used to compare and analyze fluid characteristics with experimental data. Using the flow characteristics (wall shear stress (WSS), wall shear stress gradient (WSSG)), the rupture area was identified to be located in the distal area. However, the rupture area, in vivo studies, was observed to be present at a different location. During pulsatile flow, vibration induced by flow is implicated by weakening of the artery wall and affects more than shear stress. After adapting the fluid-induced vibration, the rupture area in aneurysm is found to be located in the same area as the in-vivo result. Since smaller inflow and low WSS provide the effect of the distal neck, the vibration provides more effects in dome area. In this study it has been found that the effect of shear stress on the rupture of aneurysm is less than the effect of vibration. In the case of non-Newtonian fluid, vibration induced by flow also has more effects than WSS and WSSG. The simulation results gave detailed information about hemodynamics under physiological pulsatile inlet condition.

1.
Y. Papaharilaou, J.A. Ekaterinaris, E. Manousaki, and A.N. Katsamouris, 2005, “Stress analysis in abdominal aortic aneurysms applying flow induced wall pressure”, 5th GRACM International congress on Computational Mechanics, Limassol, 29 June - 1 July.
2.
Feldman
C. L.
,
Stone
P. H.
, “
Intravascualr hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque
”,
Curr. Opin. Cardiol.
,
15
(
6)
.
430
440
,
2000
3.
Tateshima
S.
,
Murayama
Y.
,
Villablanca
J. P.
,
Morino
T.
,
Nomura
K
,
Tanishita
K
, and
Vinuela
F.
,
2003
, “
In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms Harboring Blebs
”,
Stroke
,
34
,
187
192
4.
Ku
D. N.
,
1997
, “
Blood flow in arteries
”,
Annu. Rev. Fluid mech.
,
29
,
399
434
.
5.
Kerber
C. W.
,
Imbesi
S. G.
, and
Knox
K
,
1999
, “
Flow dynamics in a lethal anterior communicating artery aneurysm
”,
AJNR Am J Neororadiol.
,
20
,
2000
2003
.
6.
Imbesi
S. G.
and
Kerber
C. W.
,
1999
, “
Analysis of slipstream flow in two unruptured intracranial cerebral Aneurysms
”,
AJNR Am J Neuroradiol.
,
20
,
1703
1705
.
7.
Peattie
R. A.
,
Riehle
T. J.
, and
Bluth
E. I.
,
2004
, “
Pulsatile flow in fusiform models of abdominal aortic aneurysms: Flow Fields, Velocity Patterns and Flow-induced Wall Stresses
”,
J Biomed. Eng.
,
126
,
438
46
.
8.
Aneis
,
Stancampiano
A. P.
,
Wakhloo
A. K.
, and
Lieber
B. B.
, “
Modeling of flow in a straight stented and non-stented side wall aneurysm model
”,
J Biomech Eng.
,
119
(
2)
,
206
212
,
1997
9.
Steiger
H. J.
,
Poll
A.
,
Liepsch
D.
, and
Reulen
H. J.
,
1987
, “
Hemodynamic stress in lateral saccular aneurysms: An experimental study
”,
Acta Neurochirurgica.
,
86
,
98
105
.
10.
Milner
J. S.
,
Moore
J. A.
,
Rutt
B. K.
and
Steinman
D. A.
,
1998
, “
Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects
”,
J Vascular Sug.
,
28
,
143
156
.
11.
Steiman
D. A.
,
2002
, “
Image-based computational fluid dynamics modeling in realistic arterial geometries
”,
An Biomed Eng
,
30
.
483
497
.
12.
LaMack
J. A.
,
Himburg
H. A.
,
Li
X.
and
Friedman
M. H.
,
2005
, “
Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability
”,
Annal Biomed Eng
,
33
,
457
464
.
13.
Finol
E. A.
,
Keyhani
K.
and
Amon
C. H.
,
2003
, “
The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions
”,
J. Biomech. Eng.
,
125
,
207
217
.
14.
Rhee
K.
,
Han
M. H.
and
Cha
S. H.
,
2002
, “
Changes of flow characteristics by stenting in aneurysm models: Influence of aneurysm geometry and stent porosity
”,
Ann Biomed Eng.
,
30
,
894
904
.
15.
Steinman
D. A.
,
Milner
J. S.
,
Norley
C. J.
,
Lownie
S. P.
and
Holdsworth
D. W.
,
2003
, “
Image-based computational simulation of flow dynamics in a giant intracranial aneurysm
”,
AJNR Am J Neuroradiol.
,
24
,
559
566
.
16.
Masaryk
A. M.
,
Frayne
R.
,
Unal
O.
,
Kupinski
E.
and
Strother
C. M.
,
1999
, “
In vitro and in vivo comparison of three MR measurement methods for calculating vascular shear stress in the internal carotid artery
”,
AJNR Am J Neuroradiol
,
20
,
237
245
.
17.
Hademenos
G. J.
and
Massoud
T. F.
,
1996
, “
Risk of intracranial arteriovenous malformation rupture due to venous drainage impairment
”,
Stroke
,
27
,
1072
1083
.
18.
Nieto
J. J.
and
Torres
A.
,
2000
, “
A nonlinear biomathematical model for the study of intracranial aneurysms
”,
J Neurolog Scien
,
177
,
18
23
.
19.
Finol
E. A.
and
Amon
C. H.
,
2001
, “
Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics
”,
J Biomech. Eng -T ASME
,
123
.
474
484
.
20.
Zhao
S. Z.
,
Xu
X. Y.
,
Hughes
A. D.
,
Thom
S. A.
,
Stanton
A. V.
,
Ariff
B.
, and
Long
Q.
,
2000
, “
Blood flow and vesel mechanics in a physiologically realistic model of a human carotid arterial bifurcation
”,
J Biomech.
,
33
,
975
984
.
21.
Jung
H.
,
Choi
J. W.
and
Park
C. G.
,
2004
, “
Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery
”,
Korea-Australia Rheology J
,
16
,
101
108
.
22.
Boutsianis
E.
,
Dave
H.
,
Frauenfelder
T.
,
Poulikakos
D.
,
Wildermuth
S.
,
Turina
M.
,
Ventikos
Y.
, and
Zund
G.
,
2004
, “
Computational simulation of intracoronary flow based on real coronary geometry
”,
Eur J Cardiothorac Surg
,
26
,
248
256
.
23.
Santamaria
A
,
Weydahl
E
,
Siegel
J. M.
, and
Moore
J. E.
,
1998
, “
Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature
”,
Annu. Biomed. Eng.
,
26
,
6
,
944
954
.
24.
Moore
J. E.
,
Weydahl
E. S.
, and
Santamarina
A.
,
2001
, “
Frequency dependence of dynamics curvature effects on flow through coronary arteries
”,
J Biomech. Eng - Trans ASME
,
23
,
129
133
.
25.
Zeng
D. H
,
Ding
Z. H.
,
Friedman
M. H.
, and
Ethier
C. R.
,
2000
, “
Effects of cardiac motion on right Coronary Artery Hemodynamics
”,
Ann Biomed Eng
,
31
,
420
429
.
26.
J.H. Ferziger, and M Peric, “Computation Methods for fluid dynamics”, 3rd edition, Springer.
27.
Ffowcs-Williams
J. E.
and
Hawkings
D. L.
. “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
.,
Proc. Roy. Soc. London
,
A264
:
321
342
,
1969
.
28.
Hayashi
K.
,
Handa
H.
,
Nagasawa
S.
,
Okumura
A.
, and
Moritake
K
, “
Stiffness and elastic behavior human intracranial and extracranial arteries
”,
J. Biomech.
13
,
175
184
,
1980
29.
Scott
S.
,
Ferguson
G. G.
, and
Roach
M. R.
, “
Comparision of the elastic properties of human intracranial arteries and aneurysm
”,
Can. J Physiol. Pharmacol
,
50
,
328
332
,
1972
30.
Ku
D. N.
,
Giddens
D. P.
,
Zarins
C. K.
, and
Glagov
S.
, “
Pulsatile flow and atherosclerosis in the human carotid bifurcation - Part I: Comparison with LDA measurements
”,
Atteriosclerosis
,
5
(
3)
,
293
302
,
1985
31.
He
X.
and
Ku
D. N.
, “
Pulsatile flow in the human carotid left coronary artery bifurcation: Average conditions
”,
ASME J Biomech Eng.
,
118
,
74
82
,
1996
32.
Fluent, Fluent.Inc, http://www.fluent.com.
33.
R.S. Danturthi, L.D. Partridge and V.T. Turitto, 1997, “Hemodynamics of intracranial lateral aneurysms: flow simulation studies”, IEEE Biomed. Eng. Conf., 224–227.
34.
Sahjpaul
R. L.
,
Abdulhak
M. M
,
Drake
C. G.
, and
Hammond
R. R.
, “
Fatal traumatic vertebral artery aneurysm rupture
”,
J Neurosurg
,
89
,
822
824
,
1998
35.
Gonzalez
C. F.
,
Cho
Y. I.
,
Ortega
H. V.
, and
Moret
J.
.
Intracranial aneurysms: Flow analysis of their origin and progression
.
AJNR: Am. J. Neurorad.
13
:
181
188
,
1992
.
This content is only available via PDF.
You do not currently have access to this content.