We have performed numerical simulations of confined flows in both symmetric and asymmetric wavy channels to investigate the flow bifurcations and transition scenarios dependency on geometrical and operational parameters. Laminar and time-dependent transitional flow regimes are obtained by direct numerical simulations of the mass and momentum equations using a computational program based on the spectral element method. Computational meshes for periodic computational domains are used to determine the transitional flow behavior for increasing Reynolds numbers and changing geometrical parameters. For the asymmetric wavy channel, the transition scenarios are highly dependent on the aspect ratio of the channel geometrical parameters. Depending on a specific geometric aspect ratio—one of the control parameters, the following scenarios develop: a) a first transition scenario with one flow bifurcation to a relatively low Reynolds numbers, Rec; b) a second scenario, with also one flow bifurcation, to a relatively high Reynolds numbers, Rec*; and, c) a third flow transition scenario with two Hopf bifurcations B1 and B2, occurring in critical Reynolds numbers Rec1 y Rec2, respectively, similar to the Ruelle-Takens-Newhouse scenario. In this third scenario, fundamental frequencies ω1 and ω2, and super harmonic combinations of both develop as the Reynolds number increases from laminar to transitional flow regimes. For the symmetric wavy channel and a high aspect ratio of r=0.375, a transition scenario with one flow bifurcation develops to a critical Reynolds numbers Rec** leading to a periodic flow. Further increases in the Reynolds number leads to successive periodic flows where the fundamental frequency ω1, increases continuously, in a scenario of frequency-doubling.

1.
Ghaddar
N. K.
,
Korczak
K. Z.
,
Mikic
B. B.
,
Patera
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1. Stability and Selfsustained Oscillations
,”
J. Fluid Mech.
,
163
, pp.
99
127
.
2.
Ghaddar
N. K.
,
Korczak
K. Z.
,
Mikic
B. B.
,
Patera
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 2. Resonance and Oscillatory Heat-Transfer Enhancement
,”
J. Fluid Mech.
,
168
, pp.
541
567
.
3.
Amon
C. H.
, and
Mikic
B. B.
,
1990
, “
Numerical Prediction of Convective Heat Transfer in Self-sustained Oscillatory Flow
,”
AIAA Journal Thermophys. Heat Transfer
,
4
, pp.
239
246
.
4.
Greiner
M.
,
1991
, “
An Experimental Investigation of Resonant Heat Transfer Enhancement in Grooved Channels
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1381
1391
.
5.
Greiner
M.
,
Chen
R. F.
, and
Wirtz
R. A.
,
1991
, “
Enhanced Heat Transfer/Pressure Drop Measured from a Flat Surface in a Grooved Channel
,”
ASME Journal of Heat Transfer
,
113
, pp.
498
501
.
6.
Greiner
M.
,
Chen
R. F.
, and
Wirtz
R. A.
,
1995
, “
Augmented Heat Transfer in a Recovery Passage Downstream from a Grooved Section: An Example of Uncoupled Heat/Momentum Transport
,”
ASME Journal of Heat Transfer
,
117
(
2)
, pp.
303
308
.
7.
Pereira
J. C. F.
, and
Sousa
J. M. M.
,
1993
, “
Finite Volume Calculations of Self-sustained Oscillations in a Grooved Channels
,”
J. Comput. Phys.
,
106
, pp.
19
29
.
8.
Nigen
J. S.
, and
Amon
C. H.
,
1994
, “
Time-dependent Conjugate Heat Transfer Characteristics of Self-sustained Oscillatory Flows in a Grooved Channel
,”
ASME Journal Fluid. Eng.
,
116
, pp.
499
507
.
9.
Wirtz
R. A.
,
Huang
F.
, and
Greiner
M.
,
1997
, “
Measurements of Fully-Developed Augmented Convection in a Symmetrically Grooved Channel
,”
Proceedings of the ASME Heat Transfer Division
,
HTD-353
, pp.
29
35
.
10.
Wirtz
R. A.
,
Huang
F.
, and
Greiner
M.
,
1999
, “
Correlation of Fully Developed Heat Transfer and Pressure Drop in a Symmetrically Grooved Channel
,”
ASME Journal Heat Transfer
,
113
, pp.
236
239
.
11.
Nishimura
T.
, and
Kunitsugu
K.
,
1997
, “
Self-sustained Oscillatory Flow and Fluid Mixing in Grooved Channels
,”
Kagaku Kogaku Ronbunshu
,
23
, pp.
764
771
.
12.
Nishimura
T.
,
Kunitsugu
K.
, and
Morega
A. M.
,
1998
, “
Fluid Mixing and Mass Transfer Enhancement in Grooved Channels for Pulsatile Flow
,”
Journal Enhanced Heat Transfer
,
5
, pp.
23
27
.
13.
Nishimura
T.
,
Oka
N.
,
Yoshinaka
Y.
, and
Kunitsugu
K.
,
2000
, “
Influence of Imposed Oscillatory Frequency on Mass Transfer Enhancement of Grooved Channels for Pulsatile Flow
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2365
2374
.
14.
Adache
T.
, and
Uehara
H.
,
2001
, “
Correlation between Heat Transfer and Pressure Drop in Channels with Periodically Grooved Parts
,”
Int. J. Heat Mass Transfer
,
44
, pp.
4333
4343
.
15.
Del Valle, M., Carrasco A. M., and Guzma´n, A. M., 2002, “Flow Transitions and Heat Transfer in Open Block Tandem Channels,” ITherm 2002, International Conference on Thermal, Mechanics and Thermomechanical Phenomena in Electronic Systems, San Diego, California, May 29-June 1.
16.
Guzma´n, A. M., and Del Valle, M., 2005, “Heat Transfer Enhancement in Grooved Channels due to Flow Bifurcations,” Journal of Heat and Mass Transfer (Wa¨rme- und Stoffu¨bertragung).
17.
Guzma´n
A. M.
, and
Amon
C. H.
,
1994
, “
Transition to Chaos in Converging-Diverging Channel Flows: Ruelle-Takens-Newhouse Scenario
,”
Phys. Fluids A
,
6
(
6)
, pp.
1994
2002
.
18.
Guzma´n
A. M.
, and
Amon
C. H.
,
1996
, “
Dynamical Flow Characterization of Transitional and Chaotic Regimes in Converging-Diverging Channels
,”
J. Fluid Mech.
,
321
, pp.
25
57
.
19.
Guzma´n
A. M.
, and
Amon
C. H.
,
1998
, “
Convective Heat Transfer and Flow Mixing in Converging-Diverging Channel Flows
,”
Proceedings of the ASME Heat Transfer Division
, Vol.
1
,
HTD-361-1
, pp.
61
68
.
20.
Dellil
A. Z.
,
Azzi
A.
, and
Jubran
B. A.
,
2004
, “
Turbulent Flow and Convective Heat Transfer in a Wavy Wall Channel
,”
Journal of Heat and Mass Transfer (Wa¨rme- und Stoffu¨bertragung)
,
40
, pp.
793
799
.
21.
Gunther
A.
, and
Von Rohr
P. R.
,
2003
, “
Large-scale Structures in a Developed Flow Over a Wavy Wall
,”
J. Fluid. Mech.
,
478
, pp.
257
285
.
22.
Floryan
J. M.
,
2003
, “
Vortex Instability in a Diverging-Converging Channel
,”
J. Fluid Mech.
,
482
, pp.
17
50
.
23.
Patera
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Computational Physics
,
54
(
3)
, pp.
468
488
.
24.
Amon
C. H.
,
1995
, “
Spectral Element-Fourier Method for Unsteady Forced Convective Heat Transfer in Complex Geometry Flows
”,
AIAA J. Thermophysics and Heat Transfer
,
9
(
2)
, pp.
247
253
.
25.
Urzu´a, F. A., 2005, “Espectros de Fourier, Pseudo Espacio de Fase y Exponentes de Lyapunov en el Transporte de Fluido y Calor en Canales Sinusoidales Paralelos Asime´tricos,” Mechanical Engineer Thesis, Universidad de Santiago de Chile.
26.
Aracena, T. A., 2006, “frequency-doubling Escenario de Transicio´n en Canales Sinusoidales Sime´tricos,” Mechanical Engineer Thesis, Universidad de Santiago de Chile.
27.
Guzma´n, A. M., and Villar, F., 2005, “Flow Bifurcations and Heat Transfer Enhancement in Asymmetric Grooved Channels,” ’Proceeding of HT2005, 2005 Summer Heat Transfer Conference, July 17–22, 2005, San Francisco, CA, USA.
This content is only available via PDF.
You do not currently have access to this content.