This paper is concerned with the interaction between nanoparticles in buoyancy-driven flow. The nanoparticles suspended in a base liquid are driven to stochastic motion by rapidly fluctuating forces, this phenomenon is termed as 'thermal dispersion' resulting from the dissociation of the ambient solvent molecules taking place within the mixture. Such thermal dispersion is esteemed to play an aggressive role in the increase of energy exchange rates in the fluid. Under the influence of these forces, the suspended nanoparticles may experience interparticle collision and attachment of the colliding particles and form aggregates. The theme of the present work is to understand the thermal transport phenomena of buoyancy-driven nanoparticles as well as to analyze the enhancement mechanism of energy transport from the nanoparticles. By considering physical properties of both the base fluid and the nanoparticles, as well as the structure of the nanoparticles and aggregates, a mathematical model has been developed to predict the axial velocity and temperature of both the fluid and the nanoparticle arbitrarily moving inside the system. The model proposed is a two-equation model, one for the fluid and the other for the nanoparticles, which are later combined together to form a non-homogeneous equation in x- and y-direction respectively. The solutions to these equations are presented in this work.

1.
P.Keblinski, S.R.Phillpot, S.U.S.Choi, J.A.Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids).
2.
Lee
S.
,
Choi
S. U. S
,
Li
S.
,
Eastman
J. A.
,
ASME J. Heat Transfer
121
(
1999
)
280
280
.
3.
Xie
H. Q.
,
Wang
J. C.
,
Xi
T. G.
,
Liu
Y.
,
Ai
F.
,
J. Appl. Phys.
91
(
2002
)
4568
4568
.
4.
Eastman
J. A.
,
Choi
S. U. S
,
Li
S.
,
Yu
W.
,
Thompson
L. J.
,
Appl. Phys. Lett.
78
(
2001
)
718
718
.
5.
J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Cambridge, UK, 1904, p. 435.
6.
Wang
X. W.
,
Xu
X. F.
,
Choi
S. U. S.
,
Thermal conductivity of nanopartticle-fluid mixture
,
J. Thermophys. Heat Transfer
13
(
1999
)
474
480
.
7.
Xie
H. Q.
,
Wang
J. C.
,
Xi
T. G.
,
Li
Y.
,
Ai
F.
,
Dependence of the thermal conductivity of nano-particle-fluid mixture on the base fluid
,
J. Mater. Sci. Lett.
21
(
2002
)
1469
1471
.
8.
Junemoo Koo and Clement Kleinstreuer, A new thermal conductivity model for nanofluids.
9.
Khalil Khanafer, Kambiz Vafai, Marilyn Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids.
10.
Lu
S-Y.
,
Critical interfacial characteristics for effective conductivities of isotropic composites containing spherical inclusions
,
J. Appl. Phys.
77
(
1995
)
5215
5219
.
11.
Lu
S-Y.
,
Song
J.-L.
,
Effective thermal conductivity of composites with spherical inclusions: effect of coating and detachment
,
J. Appl. Phys.
79
(
1996
)
609
618
.
12.
Jeffrey
D. J.
,
Conduction through a random suspension of spheres
,
Proc. Roy. Soc. Lond. A
335
(
1973
)
355
367
.
13.
Keblinski
P.
,
Phillpot
S. R.
,
Choi
U. S.
,
Eastman
J. A.
,
Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
,
Int. J. Heat Mass Transfer
45
(
2002
)
855
863
.
14.
Hamilton
R. L.
,
Crosser
O. K.
,
Thermal conductivity of heterogeneous two-component systems
,
I & EC Fundamentals
1
(
1962
)
187
191
.
15.
Davis
R. H.
,
Thermal conductivity of mixture with spherical inclusions
,
Int. J. Thermophys.
7
(
1986
)
609
620
.
16.
Hasselman
D. H. P.
,
Johnson
L. F.
,
Interfacial effect on the thermal conductivity of composites
,
J. Compos. Mater.
21
(
1987
)
508
515
.
17.
Chiew
Y. C.
,
Glandt
E. D.
,
Effective thermal conductivity of dispersion: the effect of resistance at the particle surfaces
,
Chem. Eng. Sci.
42
(
1987
)
2677
2685
.
18.
R.J. Hunter, Introduction to Modern Colloid Science, Oxford Science Publications, Oxford, UK, 2003.
19.
R. Probstein, Physicochemical Hydrodynamics, second ed., Wiley Interscience, Hoboken, NJ, 2003.
20.
D. Schroeder, An Introduction to Thermal Physics, Addison Wesley Longman, San Francisco, CA, 2000.
21.
Pak
B.
,
Cho
Y.
,
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
,
Exp. Heat Transfer
11
(
1998
)
151
170
.
22.
Das
S.
,
Putra
N.
,
Thiesen
P.
,
Roetzel
W.
,
Temperature dependence of thermal conductivity enhacement for nano-fluids
,
J. Heat Transfer
125
(
2003
)
567
574
.
23.
Plumb
O. A.
,
The effect of thermal dispersion on heat transfer in packed bed boundary layers
,
Proc. ASME JSME Thermal Engineering Joint Conference
2
(
1983
)
17
22
.
This content is only available via PDF.
You do not currently have access to this content.