Organic-aqueous (phenol) liquid extraction is one of the commonly used DNA purification methods. Effective mass transfer of biological material between the discrete fluid phases is key to achieving efficient extraction when designing microfluidic devices based on this technique. In the microscale regime, mass transfer is often diffusion limited. However, mass transfer can be enhanced through the formation of discrete droplets within a microchannel, which leads to a recirculation flow pattern within the droplet. This recirculation increases the mass transfer rate of material to the organic-aqueous interface. In this study, an experimental and computational examination of sample extraction between the organic and aqueous phases through droplet formation is presented. The experiment is conducted within a converging dual inlet microfluidic channel fabricated in PDMS. By controlling the capillary number of the flow, different flow patterns are created in the channel. The flow patterns are examined using a computational fluid dynamics (CFD) simulation. The CFD model successfully simulates the flow behavior under a variety of flow conditions and provides a closer examination of the internal recirculation pattern within the droplet. The experimental sample extraction utilizes a fluorescent dye localization technique and shows that the droplet flow offers a significant improvement in the speed of sample extraction over diffusional mixing. A preliminary test demonstrates the feasibility of using the droplet formation for fast extraction with biological samples.

1.
Sambrook, J. and Russell, D. W., 2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Chap. 1.
2.
Reddy
V.
, and
Zahn
J. D.
2005
, “
Interfacial stabilization of organic-aqueous two-phase microflows for a miniaturized DNA extraction module
.”
J Colloid Interface Sci
,
286
(
1)
, pp.
158
165
.
3.
Zahn, J.D., and Reddy, V., 2006, “Electrohydrodynamic instability mixing: Two phase linear stability analysis and micromixing for a miniaturized DNA extraction module,” Microfluid Nanofluid, available online DOI: 10.1007/s10404-006-0082-y.
4.
Thorsen
T.
,
Roberts
R. W.
,
Arnold
F. H.
, and
Quake
S. R.
,
2001
, “
Dynamic pattern formation in a vesicle-generating microfluidic device
.”
Physical review letters
,
86
(
18)
, pp.
4163
4166
.
5.
Anna
S. L.
,
Bontoux
N.
, and
Stone
H. A.
,
2003
, “
Formation of dispersions using “flow focusing” in microchannels
.”
Applied Physics Letters
,
82
(
3)
, pp.
364
366
.
6.
Anna
S. L.
,
Weitz
D. A.
, and
Stone
H. A.
,
2004
, “
Geometrically mediated breakup of drops in microfluidic devices
.”
Physical Review Letters
,
92
(
5)
, pp.
1
-
054503
.
7.
Tan
Y. C.
,
Fisher
J. S.
,
Lee
A. I.
,
Cristini
V.
, and
Lee
A. P.
,
2004
, “
Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting
.”
Lab on a Chip
,
4
(
4)
, pp.
292
298
.
8.
Hosokawa
K.
,
Fujii
T.
, and
Endo
I.
,
1999
, “
Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)-Based Microfluidic Device
.”
Analytical Chemistry
,
71
(
20)
, pp.
4781
4785
.
9.
Paik
P.
,
Pamula
V. K.
, and
Fair
R. B.
,
2003
, “
Rapid droplet mixers for digital microfluidic systems
.”
Lab on a Chip
,
3
(
4)
, pp.
253
259
.
10.
Tice
J. D.
,
Song
H.
,
Lyon
A. D.
, and
Ismagilov
R. F.
,
2003
, “
Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers
.”
Langmuir
,
19
(
22)
, pp.
9127
9133
.
11.
Handique
K.
, and
Burns
M. A.
,
2001
, “
Mathematical modeling of drop mixing in a slit-type microchannel
.”
Journal of Micromechanics and Microengineering
,
11
(
5)
, pp.
548
554
.
12.
Tice
J. D.
,
Lyon
A. D.
, and
Ismagilov
R. F.
,
2004
, “
Effects of viscosity on droplet formation and mixing in microfluidic channels
.”
Analytica Chimica Acta
,
507
(
1)
, pp.
73
77
.
13.
HO, L.W., Marchetti, J. M., and Galegos. C., 1999, “Stability Criterion for Microscale Concentric Flow of Two Immiscible Liquids”, Technical Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems, San Juan, Puerto Rico, pp. 530–533.
14.
Hibara
A.
,
Nonaka
M.
,
Hisamoto
H.
,
Uchiyama
K.
,
Kikutani
Y.
,
Tokeshi
M.
, and
Kitamori
T.
,
2002
, “
Stabilization of Liquid Interface and Control of Two-Phase Confluence and Separation in Glass Microchips by Utilizing Octadecylsilane Modification of Microchannels
.”
Analytical Chemistry
,
74
(
7)
, pp.
1724
1728
.
15.
Tokeshi
M.
,
Minagawa
T.
,
Uchiyama
K.
,
Hibara
A.
,
Sato
K.
,
Hisamoto
H.
, and
Kitamori
T.
,
2002
, “
Continuous Flow Chemical Processing on a Microchip by Combining Microunit Operations and a Multiphase Flow Network
.”
Analytical Chemistry
,
74
(
7)
, pp.
1565
1571
.
16.
Hirt
V. W.
;
Nichols
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
Journal of Computational Physics
,
39
(
1)
, pp.
201
205
.
17.
Kobayashi
I.
,
Mukataka
S.
, and
Nakajima
M.
,
2004
, “
CFD Simulation and Analysis of Emulsion Droplet Formation from Straight-Through Microchannels
.”
Langmuir
,
20
(
22)
, pp.
9868
9877
.
18.
Abrahamse
A. J.
,
Van der Padt
A.
,
Boom
R. M.
, and
De Heij
W. B. C.
,
2001
, “
Process fundamentals of membrane emulsification: simulation with CFD
.”
AIChE Journal
,
47
(
6)
, pp.
1285
1291
.
19.
Tseng
F. G.
,
Yang
I. D.
,
Lin
K. H.
,
Ma
K. T.
,
Lu
M. C.
,
Tseng
Y. T.
, and
Chieng
C. C.
,
2002
, “
Fluid filling into micro-fabricated reservoirs
.”
Sensors and Actuators, A: Physical
,
A97-98
, pp.
131
138
.
20.
Duffy
D. C.
,
McDonald
J. C.
,
Schueller
O. J. A.
, and
Whitesides
G. M.
,
1998
, “
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)
.”
Analytical Chemistry
,
70
(
23)
, pp.
4974
4984
.
This content is only available via PDF.
You do not currently have access to this content.