In this paper, we report on an inexpensive non-lithographic approach to create superhydrophobic silicon surfaces using porous silicon technology. We have used a two-step method to create an unstable hierarchical (micro-nano) superhydrophobic silicon surface. Our technique is a unique combination of a high current density (170mA/cm2) porous silicon formation step followed by a wet etching step in BOE/HNO3. Porous silicon layers, of both n- and p-type wafers were used in these experiments. The contact and rolling angles were measured for: 1) regular porous silicon, 2) porous silicon with hierarchical fractal-shape structure, and 3) hierarchical fractal-shape porous silicon after the wet etching step. For both n- and p-type wafers, the contact angles of regular porous silicon (nonhierarchical) were around 120° with a rolling angle of 90°. With hierarchical structure, the contact angle increased to 135° and after addition wet etching, the contact angle approached 160° (superhydrophobic). Besides, after wet etching step the surface became extremely unstable showing a very low rolling angle (<1°).

1.
Sun
T.
;
Feng
L.
;
Gao
X.
;
Jiang
L.
,
2005
, “
Bioinspired Surfaces with Special Wettability
”,
Acc. Chem. Res.
,
38
, pp.
644
652
.
2.
Cheng
Y.
,
2005
, “
Is the Lotus Leaf Superhydrophobic?
”,
Appl. Phys. Lett.
,
86
, pp.
144101
144101
.
3.
Ball
P.
,
1999
, “
Shark Skin and Other Solutions
”,
Nature
,
400
, pp.
507
509
.
4.
Miwa
M.
;
Nakajima
A.
;
Fujishima
A.
;
Hashimoto
K.
;
Watanabe
T.
,
2000
, “
Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces
”,
Langmuir
,
16
, pp.
5754
5760
.
5.
Krupenkin
T.
;
Taylor
A.
,
Schneider
T.
;
Yang
S.
,
2004
, “
From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces
”,
Langmuir
,
20
, pp.
3824
3827
.
6.
Patankar
N.
,
2003
, “
On the Modeling of Hydrophobic Contact Angles on Rough Surfaces
”,
Langmuir
,
19
, pp.
1249
1253
.
7.
Verheijen
H. J. J.
;
Prins
M. W. J.
,
1999
, “
Reversible Electrowetting and Trapping of Charge: Model and Experiments
”,
Langmuir
,
15
, pp.
6616
6620
.
8.
Fu
Q.
;
Rao
G.
;
Basame
S.
;
Keller
D.
;
Artyushkova
K.
,
2004
, “
Reversible Control of Free Energy and Topography of Nanostructured Surfaces
”,
J. Am. Chem. Soc.
,
126
, pp.
8904
8905
.
9.
Erbil
H. Y.
;
Demirel
A. L.
;
Avci
Y.
;
Mert
O.
,
2003
, “
Transformation of a Simple Plastic into a Superhydrophobic Surface
”,
Science
,
299
, pp.
1377
1379
.
10.
Feng
L.
;
Li
S.
;
Li
Y.
;
Li
H.
;
Zhang
L.
;
Zhai
J.
;
Song
Y.
;
Liu
B.
;
Jiang
L.
;
Zhu
D.
,
2002
, “
Super-Hydrophobic Surfaces: From Natural to Artificial
”,
J. Adv. Mater.
,
14
, pp.
1857
1860
.
11.
Sun
M.
;
Luo
C.
;
Xu
L.
;
Ji
H.
;
Ouyang
Q.
;
Yu
D.
;
Chen
Y.
,
2005
, “
Artificial Lotus Leaf by Nanocasting
”,
Langmuir
,
21
, pp.
8978
8981
.
12.
Nakajima
A.
;
Fujishima
A.
;
Hashimoto
K.
;
Watanabe
T.
,
1999
, “
Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate
”,
Adv. Mater.
,
11
, pp.
1365
1368
.
13.
Lau
K. K. S.
;
Bico
J.
;
Teo
K. B. K.
;
Chhowalla
M.
;
Amaratunga
G. A. J.
,
2003
, “
Superhydrophobic Carbon Nanotube Forests
”,
Nano. Lett.
,
3
, pp.
1701
1705
.
14.
Ronkel
F.
;
Schultze
J. W.
,
2000
, “
Electrochemical Aspects of Porous Silicon Formation
”,
J. Porous. Mater.
,
7
, pp.
11
16
.
15.
Gullis
A. G.
;
Canham
L. T.
;
Calcott
P. D. J.
,
1997
, “
The structural and luminescence properties of porous silicon
”,
J. Appl. Phys
.,
82
, pp.
909
965
.
16.
Ottow
S.
;
Lehmann
V.
;
Foll
H.
,
1996
, “
Processing of Three-Dimensional Microstructures Using Macroporous n-Type Silicon
”,
J. Electrochem. Soc.
,
143
, pp.
385
390
.
17.
Lehmann
V.
;
Ronnebeck
S.
,
1999
, “
The Physics of Macropore Formation in Low-Doped p-Type Silicon
”,
J. Electrochem. Soc.
,
146
, pp.
2968
2975
.
18.
Erlebacher
J.
;
Sieradzki
K.
;
Searson
P. C.
,
1994
, “
Computer simulations of pore growth in silicon
”,
J. Appl. Phys.
,
76
, pp.
182
187
.
19.
Lang
W.
;
Steiner
P.
;
Sandmaier
H.
,
1995
, “
Porous Silicon: A Novel Material for Microsystems
”,
Sensors and Actuators A
,
51
, pp.
31
36
.
20.
Zhang
X. G.
,
2004
, “
Morphology and Formation Mechanisms of Porous Silicon
”,
J. Electrochem. Soc.
,
151
, pp.
C69–C80
C69–C80
.
21.
Smith
R. L.
;
Collin
S. D.
,
1992
, “
Porous Silicon Formation Mechanisms
”,
J. Appl. Phys.
,
71
, pp.
R1–R22
R1–R22
.
22.
Bley
R. A.
;
Kauzlarich
S. M.
;
Davis
J. E.
;
Lee
W. H.
,
1996
, “
Characterization of Silicon Nanoparticles Prepared from Porous Silicon
”,
Chem. Mater.
,
8
, pp.
1881
1888
.
23.
Canham
L. T.
,
1990
, “
Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
”,
Appl. Phys. Lett.
,
57
, pp.
1046
1048
.
24.
Lehmann
V.
;
Gosele
U.
,
1991
, “
Porous Silicon Formation: A Quantum Wire Effect
”,
Appl. Phys. Lett.
,
58
, pp.
856
858
.
25.
Schoning
M.
;
Simonis
A.
;
Ruge
C.
;
Ecken
H.
;
Veggian
M.
;
Luth
H.
,
2002
, “
A (Bio)-Chemical Field-Effect Sensor with Macroporous Si as Substrate Material and a SiO2/LPCVD-Si3N4 Double Layers as pH Transducer
”,
Sensors
,
2
, pp.
11
22
.
26.
Thust
M.
;
Schoning
M.
;
Frohnhoff
S.
;
Kordos
P.
;
Luth
H.
,
1996
, “
Porous Silicon as a Substrate Material for Potentiometric Biosensors
”,
Meas. Sci. Technol
.,
7
, pp.
26
29
.
27.
Kurowski, A.; Schultze, J. W.; Luth, H.; Schoning, M. J., 2001, “Micro- and Nanopatterning of Sensor Chips by Means of Macroporous Silicon”, The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany.
28.
Drot
J.
;
Lindstrom
K.
;
Rosengren
L.
;
Laurell
T.
,
1997
, “
Porous Silicon as the Carrier Matrix in Microstructured Enzyme Reactors Yielding High Enzyme Activities
”,
J. Micromech. Microeng.
,
7
, pp.
14
23
.
This content is only available via PDF.
You do not currently have access to this content.