We demonstrate experimentally that through the use of proportional-differential control, it is possible to stabilize the no-motion state of a fluid layer heated from below, cooled from above, and confined in an upright, circular cylinder (the Rayleigh-Be´nard problem). An array of 24 independently controlled heaters (thermal actuators), microfabricated on a silicon wafer, constitutes the bottom boundary of the test cell. A cooling system maintains the top boundary at a constant temperature. Silicon diodes located at the mid-height of the cell, above the actuators, measure the fluid's temperature. The multi-input, multi-output controller adjusts the heaters' power in proportion to the deviation of the fluid's temperatures, as recorded by the diodes, from preset values associated with the no-motion, conductive state. First, a set of experiments was conducted in the absence of a controller to determine the uncontrolled, reference state. Advantage is taken of the linear dependence of the mid-height temperature on the power input in the no-motion state. The preset temperatures are determined by extrapolating the mid-height temperatures to the desired input power values. A proportional controller is then engaged. We show that as the controller's gain increases so does the critical Rayleigh number for the onset of convection. The proportional controller allows us to increase the critical Rayleigh number by as much as a factor of 1.4. When the controller's gain is larger than a critical value, the system becomes time-wise oscillatory (Hopf bifurcation) and the controller's performance deteriorates. The oscillatory convection can be significantly damped out by engaging a proportional-differential (PD) controller. The PD controller allows us to further increase the critical Rayleigh number for the onset of convection to as much as a factor or 1.7 compared to the uncontrolled case. Further increases in the critical Rayleigh number were not possible due to the actuators' saturation. We also compared the supercritical flow patterns at the mid-height of the test cell in the presence of the controller with the flow patterns in the absence of a controller. The proportional controller modified the flow pattern from a single convective cell with ascending fluid in one half of the cell and descending in the other half, to fluid ascending at the center of the cell and descending at near the lateral wall. Our work represents an improvement over previous experimental investigations on the stabilization of Rayleigh-Be´nard convection in which the critical Rayleigh number was increased by only a factor of 1.2. Almost uniform temperature distribution at the mid-height is obtained through the combined action of proportional and derivative controllers. The Rayleigh-Be´nard convection is suppressed under conditions when, in the absence of a controller, flow would persist.
Skip Nav Destination
ASME 2006 International Mechanical Engineering Congress and
Exposition
November 5–10, 2006
Chicago, Illinois, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4770-5
PROCEEDINGS PAPER
Experimental Study on the Stabilization of the No-Motion State in the Rayleigh-Benard Convection Problem Available to Purchase
Marcel C. Remillieux
Marcel C. Remillieux
University of Pennsylvania
Search for other works by this author on:
Marcel C. Remillieux
University of Pennsylvania
Paper No:
IMECE2006-16350, pp. 1001-1009; 9 pages
Published Online:
December 14, 2007
Citation
Remillieux, MC. "Experimental Study on the Stabilization of the No-Motion State in the Rayleigh-Benard Convection Problem." Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Fluids Engineering. Chicago, Illinois, USA. November 5–10, 2006. pp. 1001-1009. ASME. https://doi.org/10.1115/IMECE2006-16350
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Numerical and Experimental Investigation of Phase Change Heat Transfer in the Presence of Rayleigh–Benard Convection
J. Heat Transfer (June,2020)
Combined Effect of Temperature Modulation and Magnetic Field on the Onset of Convection in an Electrically Conducting-Fluid-Saturated Porous Medium
J. Heat Transfer (May,2008)
Effect of Sidewall Conductance on Nusselt Number for Rayleigh-Bénard Convection: A Semi-Analytical and Experimental Correction
J. Heat Transfer (December,2019)
Related Chapters
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Extended Surfaces
Thermal Management of Microelectronic Equipment
Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition