This paper presents a numerical study of 3-D movement of a conducting spherical droplet in magnetic levitation mechanism. At present, we not only investigate vertical and horizontal movements of the magnetically levitated droplet, but also self-rotation of the droplet. The hybrid 3-D boundary element method (BEM) and finite element method (FEM) with edge elements are used to calculate electromagnetic fields, Lorentz force, and torques with respect to vertical and horizontal axis. By this method, finite elements are used to discretize the spherical droplet region, while boundary elements are applied to free space outside the droplet. The finite element and boundary element regions are then coupled through interface boundary conditions. The coupling of FEM/BEM is solved iteratively. The computed results agree excellently with available analytical and numerical solutions. Furthermore, the complex 3-D movement of the magnetically levitated droplet is solved and analyzed by using the current FE/BE model.

1.
Ai
X.
, and
Li
B. Q.
,
2004
Melt flow instability and turbulence in electro-magnetically levitated droplets
,
Materials and Manufacturing Process
, Vol.
19
(
4)
, pp.
737
759
2.
Akarapu
R.
,
Li
B. Q.
,
Huo
Y.
,
Tang
J.
and
Liu
F.
,
2004
Integrated modeling of microwave food processing and comparison with experimental measurements
,
Journal of Electromagnetic Power and Microwave Technology
,
39
(
3 & 4)
,
171
184
3.
Bayazitoglu
Y.
and
Sathuvalli
U. B.
,
1994
,
Eddy current heating in an electrically conducting sphere
,
J. Materials Processing and Manuf. Sci.
, Vol.
3
, pp.
117
141
4.
Bayazitoglu
Y.
and
Sathuvalli
U. B.
,
1996
,
The Lorentz forces on an electrically conducting sphere in an alternating magnetic field
,
IEEE Trans. on Magn.
, Vol.
32
(
2)
, pp.
386
400
5.
Enokizono
M.
,
Todaka
T.
,
Yokoji
K.
,
Wada
Y.
,
Matsumoto
I.
,
1995
,
Three-dimensional moving simulation of levitation-melting method
,
IEEE TRANSACTIONS ON MAGNETICS
, Vol.
31
(
3)
, pp.
1869
1872
6.
Huo
Y.
and
Li
B. Q.
,
2005
,
Boundary/finite element modeling of 3-d electromagnetic heating during microwave food processing
,
ASME Journal of Heat Transfer
,
127
(
10)
,
1159
1166
.
7.
Johns
P. B.
and
Beurle
R. L.
,
1971
,
Numerical solution of two-dimensional scattering problems using a transmission line matrix
,
Proc. Inst. Eng.
, Vol.
118
,
1203
1208
.
8.
Li
B. Q.
,
1993
,
The magnetothermal phenomena in electromagnetic levitation processes
,
Int. J. Eng. Sci.
, Vol.
31
, No.
2
, pp.
201
220
9.
Li
B. Q.
,
1994
a,
The fluid flow aspects of electromagnetic levitation processes
,
Int. J. Eng. Sci.
, Vol.
32
(
1)
, pp.
45
67
10.
Li
B. Q.
,
1994
b,
The transient magnetohydrodynamics in electromagnetic levitation processes
,
Int. J. Eng. Sci.
, Vol.
32
(
8)
, pp.
1315
1336
11.
Li, B.Q., Cui, X. and Song, S.P., A Galerkin boundary element formulation of surface radiation problems, Int. J. Boundary Element Analysis, in print
12.
Li
B. Q.
,
Song
S. P.
,
1999
,
Thermal and fluid flow aspects of magnetic and electrostatic levitation of liquid droplets
,
J. Microgravity Sci. Tech.
, Vol.
XI
No.
4
, pp.
134
143
13.
Lohofer
G.
,
1989
,
Theory of an electromagnetically levitated metal sphere I: absorbed power
,
SIAM J. Appl. Math.
, Vol.
49
(
2)
, pp.
567
581
14.
Lohofer
G.
,
1993
,
Force and torque of an electromagnetically levitated metal sphere
,
J. Quarterly Appl. Math.
,
LI
(
3)
, pp.
495
495
15.
Lohofer
G.
,
1994
,
Magnetization and impedance of an inductively coupled metal sphere
,
Int. J. Eng. Sci.
,
32
(
1)
, pp.
107
107
16.
McDonald
B. H.
,
Wexler
A.
,
1972
,
Finite element solution of unbounded field problems
,
IEEE Trans. Microwave Theory Tech.
, MTT-
20
, pp.
841
847
17.
Mestel
A. J.
,
1982
,
Magnetic levitation of liquid metals
,
J. Fluid. Mech.
, Vol.
117
, pp.
17
43
18.
Muck, O., Germ. Pat. No. 422004 (1923)
19.
Okress
E. C.
,
Wroughton
D. M.
,
Comenetz
G.
,
Brace
P. H.
, and
Kelly
J. C. R.
,
1952
,
Electromagnetic levitation of Solid and Molten Metals
,
J. Appl. Phy.
, Vol.
23
, No.
5
, pp.
545
552
20.
Rony, P.B., 1969, The electromagnetic levitation melting of metals, Trans. Vac. Met. Conf., American Vacuum Society, Boston, 55–135
21.
Silvester
P. P.
,
Hsieh
M. S.
,
1971
,
Finite element solution of 2-dimensional exterior field problems
.
IEE Proc.
,
118
, pp.
1743
1747
22.
Song
S. P.
,
Li
B. Q.
, and
Khodadadi
J. M.
,
1998
a,
Coupled boundary/finite element solution of magnetothermal problems
,
Int. J. Num. Meth. Heat and Fluid Flow
,
8
(
3)
, pp.
321
349
23.
Song
S. P.
and
Li
B. Q.
,
1998
b,
A boundary/finite element analysis of magnetic levitation systems in normal and micro gravity: surface deformation and thermal phenomena
,
ASME Journal of Heat Transfer
,
120
, pp.
491
503
24.
Song
S. P.
,
Li
B. Q.
,
1999
a,
A coupled boundary/finite element method for the computation of magnetically and electrostatically levitated droplet shapes
,
Int. J. Numer. Meth. Engng.
, VOL.
44
, pp.
1055
1077
25.
Song, S.P. 1999b, Finite element analysis of surface oscillation, fluid flow, and heat transfer in magnetically and electrostatically levitated droplets, Ph.D thesis, Washington State University, Pullman, WA
26.
Suryanarayana
P. V. R.
and
Bayazitoglu
Y.
,
1991
,
Effect of static deformation and external forces on the oscillations of levitated droplets
,
Physics of Fluids A.
, Vol.
3
, pp.
967
977
27.
Zong
J. H.
,
Li
B. Q.
, and
Szekely
J.
,
1992
,
The electrodynamic and hydrodynamic phenomena in magnetically-levitated droplets, Part I. steady state behavior
,
Acta Astronautica
,
26
(
6)
, pp.
435
449
28.
Zong
J. H.
,
Li
B. Q.
, and
Szekely
J.
,
1993
,
The electrodynamic and hydrodynamic phenomena in magnetically-levitated droplets, Part II. transient behavior and heat transfer considerations
,
Acta Astronautica
,
29
(
4)
, pp.
305
311
This content is only available via PDF.
You do not currently have access to this content.