Nano-scale substrate cleanliness is an essential requirement in variety of nanotechnology applications. Currently, the detachment and removal of sub-100nm particles is of a particular interest and challenge in semiconductor manufacture, lithography, and nanotechnology. The proposed particle removal technique based on pressure shock waves generated by a laser induced plasma (LIP) core is of interest in various nano/micro fabrication applications in which the minimum feature size has been reducing rapidly. Any removal technique adopted in a fabrication process must be on the same shrinking feature reduction curve since, for device reliability, the minimum tolerable foreign particle size on a substrate depends on the minimum feature size on a nano/micro-system or device. In recent years, we have demonstrated that nanoparticles can be detached and removed from substrates using LIP shock wavefronts. While we have experimentally established the effectiveness of the LIP technique for removing nanoparticles in the sub-100nm range, the removal mechanisms were not well-understood. In the current work, we introduce a set of novel removal mechanisms based on moment resistance of the particle-substrate bond and discuss their effectiveness and applicability in laser-induced plasma shock nanoparticle removal. To gain better understanding for the detachment mechanisms, the resultant force and rolling moment induced on the nanoparticle by the LIP shockwave front need to be determined. Since, for sub-100nm nanoparticles, the Knudsen number Kn exceeds 0.1, the applicability of the Navier-Stokes equations for the gas motion becomes questionable as the continuum assumption for the medium breaks down due to the invalidity of the transport terms in these equations. Detachment and detachment mechanisms of nanoparticles from flat surfaces subjected to shockwaves are investigated by employing molecular gas dynamic simulations using the direct simulation Monte Carlo method and experimental transient pressure data. Two new mechanisms for nanoparticle detachment based on rolling moment resistance of the adhesion bond and the elastic restitution effect are introduced. As a result of present simulations, it is computationally demonstrated that the pulsed laser-induced shockwaves can generate sufficient rolling moments to detach sub-100nm particles and initiate removal. The transient moment exerted on a 60nm polystyrene latex (PSL) particle on a silicon substrate are presented and discussed.

1.
The International Technology Roadmap for Semiconductors (ITRS) 2005 edition, International SEMATECH.
2.
Harriot
L. R.
,
2001
, “
Limits of lithography
”,
Proceedings of the IEEE
,
89
, pp.
366
374
.
3.
Gwyn
C. W.
,
Stulen
R.
,
Sweeney
D.
, and
Attwood
D.
,
1998
, “
Extreme ultraviolet lithography
”,
Journal of Vacuum Science and Technology B
,
16
, pp.
3142
3149
.
4.
Hector
S.
, and
Mangat
P.
,
2001
, “
Review of progress in extreme ultraviolet lithography masks
”,
Journal of Vacuum Science and Technology B
,
19
, pp.
2612
2616
.
5.
Rosato, J. J., and Yalamanchili, M. R., October 2005, “Using multiple transducers at sub-65 nm for single-wafer megasonics-based cleaning”, Solid State Technology, pp 50–55.
6.
Busnaina
A. A.
,
Lin
H.
,
Moumen
N.
,
Feng
J. W.
, and
Taylor
J.
,
2002
, “
Particle adhesion and removal mechanisms in Post-CMP cleaning processes
”,
IEEE Transactions on Semiconductor Manufacturing
,
15
, pp.
374
382
.
7.
Xu
K.
,
Vos
R.
,
Vereecke
G.
,
Doumen
G.
,
Fyen
W.
,
Mertens
P. W.
,
Heyns
M. M.
,
Vinckier
C.
,
Fransaer
J.
, and
Kovacs
F.
,
2005
, “
Fundamental study of the removal mechanisms of nano-sized particles using brush scrubber cleaning
”,
Journal of Vacuum Science and Technology B
,
23
, pp.
2160
2175
.
8.
Xu
K.
,
Vos
R.
,
Vereecke
G.
,
Doumen
G.
,
Fyen
W.
,
Mertens
P. W.
,
Heyns
M. M.
,
Vinckier
C.
, and
Fransaer
J.
,
2004
, “
Particle adhesion and removal mechanisms during brush scrubber cleaning
”,
Journal of Vacuum Science and Technology B
,
22
, pp.
2844
2852
.
9.
Olim
M.
,
1997
, “
A theoretical evaluation of megasonic cleaning for submicron particles
,
Journal of Electrochemical Society
,
144
, pp.
3657
3659
.
10.
Mertens
P. W.
, and
Parton
E.
, February
2002
, “
Sub-100 nm technologies drive single wafer wet cleaning
”,
Solid State technology
,
45
(
2)
, pp.
51
54
.
11.
Vereecke
G.
,
Holsteyns
F.
,
Arnauts
S.
,
Beckx
S.
,
Jaenen
P.
,
Kenis
K.
,
Lismont
M.
,
Lux
M.
,
Vos
R.
,
Snow
J.
, and
Mertens
PW.
,
2005
, “
Evaluation of megasonic cleaning for sub-90-nm technologies
”,
Solid State Phenomena
,
103–104
, pp.
141
146
.
12.
Sherman
R.
,
Grob
J.
, and
Whitlock
W.
,
1991
, “
Dry surface cleaning using CO2 snow
”,
Journal of Vacuum Science and Technology
,
4
, pp.
1970
1977
.
13.
Toscano
C.
, and
Ahmadi
G.
,
2003
, “
Particle removal mechanisms in cryogenic surface cleaning
”,
The Journal of Adhesion
,
79
, pp.
175
201
.
14.
Cetinkaya
C.
, and
Hooper
T. R.
,
2003
, “
Efficiency studies of particle removal with pulsed-laser induced plasma
”,
Journal of Adhesion Science and Technology
,
17
, pp.
751
902
.
15.
Cetinkaya
C.
, and
Murthy Peri
M. D.
,
2004
, “
Non-contact nanoparticle removal with laser induced plasma pulses
”,
Nanotechnology
,
15
, pp.
435
440
.
16.
Varghese
I.
and,
Cetinkaya
C.
,
2004
, “
Non-contact removal of 60 nm latex particles from silicon wafers with laser induced plasma
”,
Journal of Adhesion Science and Technology
,
18
, pp.
795
806
.
17.
Devarappali
V. K.
,
Li
Y.
and
Cetinkaya
C.
,
2004
, “
Post-chemcial mechanical polishing cleaning of silicon wafers with laser-induced plasma
”,
Journal of Adhesion Science and Technology
,
18
, pp.
779
794
.
18.
Yan
H.
,
Adelgren
R.
,
Boguszko
M.
,
Elliott
G.
, and
Knight
D.
,
2003
, “
Laser energy deposition in quiescent air
”,
AIAA Journal
,
41
, pp.
1988
1995
.
19.
Soltani
M.
and
Ahmadi
G.
,
1994
, “
Particle removal mechanisms under substrate acceleration
”,
Journal of Adhesion
,
44
, pp.
161
175
.
20.
Jiang
Z.
,
Takayama
K.
,
Moosad
K. P. B.
,
Onodera
O.
and
Sun
M.
,
1998
, “
Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing
”,
Shock Waves
,
8
, pp.
337
349
.
21.
Sobral
H.
,
Villagran-Muniz
M.
,
Navarro-Gonzalez
R.
and
Raga
A. C.
,
2000
, “
Temporal evolution of the shock wave and hot core air in laser induced plasma
”,
Appl. Phys. Lett.
77
(
20)
, pp.
3158
3160
.
22.
Johnson
K. L.
,
Kendall
K.
, and
Roberts
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
”,
Proceedings Royal Society London
,
324
, pp.
301
313
.
23.
Zhou
D.
,
Kadaksham
A. T. J.
,
Peri
M. D. M.
,
Varghese
I.
and
Cetinkaya
C.
,
2006
, “
Nanoparticle detachment using shockwaves
”,
Journal of Nanoengineering and Nanosystems
,
219
, pp.
91
102
.
24.
Dominik
C.
, and
Tielens
A. G. G. M.
,
1995
, “
Resistance to rolling in the adhesive contact of two elastic spheres
”,
Philosophical Magazine A.
,
72
(
3)
, pp.
783
803
.
25.
Murthy Peri
M. D.
, and
Cetinkaya
C.
,
2005
, “
Rolling resistance moment of microspheres on surfaces
”,
Philosophical Magazine
,
85
(
13)
, pp.
1347
1357
.
26.
Bird, G. A., 1994, Molecular gas dynamics and direct simulation of gas flows, Clarendon Press, Oxford.
27.
Oran
E. S.
,
Oh
C. K.
, and
Cybyk
B. Z.
,
1998
, “
Direct simulation Monte Carlo: Recent advances and applications
”,
Annual Review of Fluid Mechanics
,
30
, pp.
403
441
.
28.
Lim
H.
,
Jang
D.
,
Kim
D.
, and
Lee
J. W.
,
2005
, “
Correlation between particle removal and shockwave dynamics in the laser shock cleaning process
”,
Journal of Applied Physics
,
97
, pp.
1
6
.
29.
Bird, G. A., 2005, DS2V Program, Version 3.3, and DS3V Program Version 1.2, GAB Consulting Ltd., Sydney, Australia.
30.
Zhou
D.
and
Cetinkaya
C.
,
2006
, “
Molecular-level Mechanisms of Nanoparticle Detachment in Laser-induced Plasma, Shockwaves
”,
Applied Physics Letters
,
88
, pp.
1
-
3
.
This content is only available via PDF.
You do not currently have access to this content.