Au/Sn eutectic solder alloy is particularly attractive for high-power electronics and optoelectronics packaging as hermetic sealing and die attachment material. The robustness and reliability of solder joint are essential to meet the global demand for longer operating lifetime in their applications. The mechanical response of Au/Sn solder alloy is studied using nanoindentation (Nano-Test 600). Miniature creep samples were created using a specially designed fixture and static loading creep tests were carried out on these solder samples at temperatures of 25°C, 75°C and 125°C using tensile testing machine (Micro-Testing System). The Young's Modulus and hardness of 80Au/20Sn solder alloy increase with an increase in load rate or a decrease in temperature. The microstructure and creep rupture fractography of 80Au/20Sn solder alloy have been observed and analysed.

1.
Matijasevic
G. S.
,
Lee
C. C.
and
Wang
C. Y.
, “
Au-Sn alloy phase diagram and properties related to its use as a bonding medium
,”
Thin Solid Films
, vol.
223
(
2)
, pp.
276
287
,
1993
.
2.
Lee
C. C.
,
Wang
C. Y.
and
Matijasevic
G. S.
, “
A new bonding technology using gold and tin multilayer composite structures
,”
IEEE Trans. Comp., Hybrids, & Manufact. Technol.
, vol.
14
(
2)
, pp.
407
412
,
1991
.
3.
Liu
X. S.
,
Hu
M. H.
,
Nguyen
H. K.
,
Caneau
C. G.
and
Rasmussen
M. H.
, “
Comparison Between Epi-Down and Epi-Up Bonded High-Power Single-Mode 980-nm Semiconductor Lasers
,”
IEEE Trans. Adv. Packag.
; vol.
27
(
4)
, pp.
640
646
,
2004
.
4.
Pittroff
W.
,
Erbert
G.
,
Beister
G.
,
Bugge
F.
,
Klein
A.
,
Knauer
A.
,
Maege
J.
,
Ressel
P.
,
Sebastian
J.
,
Staske
R.
, and
Traenkle
G.
, “
Mounting of high power laser diodes on Boron Nitride heat sinks using an optimized Au/Sn metallurgy
,”
IEEE Trans. Adv. Packag.
; vol.
24
(
4)
, pp.
434
441
,
2001
.
5.
S. A. Merritt, K. Mobarhan, R. Whaley, S. Fox and M. Dagenais, “Semiconductor Laser and Optical Amplifier Packaging,” in Optoelectronic Packaging, A.R. Mickelson, N. R. Basavanhally and Y. C. Lee, Editors. John Wiley & Sons: New York, pp. 59–78, 1997.
6.
Nishiguchi
M.
, “
Highly reliable Au-Sn eutectic bonding with background GaAs LSI chips
,”
IEEE Trans. Comp., Hybrids, & Manufact. Technol.
; vol.
14
(
3)
, pp.
523
528
,
1991
.
7.
Tew
J. W. R.
,
Shi
X. Q.
and
Yuan
S.
, “
Au/Sn Solder for Face-Down Bonding of AlGaAs/GaAs Ridge Waveguide Laser Diodes
,”
Materials Lett.
; vol.
58
(
21)
, pp.
2695
2699
,
2004
.
8.
J. W. R. Tew, Z. F. Wang, X. Q. Shi and G. Y. Li, “An Optimized Face-Down Bonding Process for Laser Diode Packages,” In Proc. IEEE 6th EPTC, pp. 390–395, 2004.
9.
Ivey
D. G.
, “
Microstructural characterization of Au/Sn solder for packaging in Optoelectronic applications
,”
Micron
; vol.
29
(
4)
, pp.
281
287
,
1997
.
10.
Fritz
M. A.
and
Cassidy
D. T.
, “
Cooling rate in diode laser bonding
,”
IEEE Trans. Comp. and Packag. Technol.
; vol.
27
(
1)
, pp.
147
154
,
2004
.
11.
Kuhmann
J. F.
,
Preuss
A.
,
Adolphi
B.
,
Maly
K.
,
Wirth
T.
,
Oesterle
W.
,
Pittroff
W.
,
Weyer
G.
, and
Fanciulli
M.
,
Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: A knowledge base for fluxless solder bonding applications
,”
IEEE Trans. Comp., Packag., & Manufact. Technol. C
; vol.
21
(
2)
, pp.
134
141
,
1998
.
12.
Olsen
D. R.
and
Berg
H. M.
, “
Properties of die bond alloys relating to thermal fatigue
,”
IEEE Trans. Comp., Hybrids, & Manufact. Technol.
; vol.
2
(
2)
, pp.
257
263
,
1979
.
13.
Yost
F. G.
,
Karnowsky
M. M.
,
Drotning
W. D.
and
Gieske
J. H.
, “
Thermal Expansion and Elastic Properties of High Gold-Tin Alloys
,”
Metall. Trans. A
; vol.
21A
(
7)
, pp.
1885
1889
,
1990
.
14.
Bendersky
L.
,
Rosen
A.
and
Mukherjee
A. K.
, “
Creep and Dislocation Substructure
,”
Int. Met. Rev.
; vol.
30
, pp.
1
15
,
1985
.
15.
S. Choi, J. G. Lee, F. Guo, T. R. Bieler, K. N. Subramanian and J. P. Lucas, “Creep properties of Sn-Ag solder joints containing intermetallic particles,” JOM; vol., pp. 22–26, 2001.
16.
Dasgupta
C. Oyan
,
Barker
D.
and
Pecht
M.
, “
Solder creep-fatigue analysis by an energy partitioning approach
,”
ASME Trans. Electronic Packaging
; vol.
144
, pp.
152
160
,
1992
.
17.
N. J. Grant and A. R. Chaudhuri, “Creep and Recovery.” American Society for Metals: Metals Park, Ohio. pp. 284–343, 1957.
18.
Igoshev
V. I.
and
Kleiman
J. I.
, “
Creep Phenomena in lead-free solders
,”
J. Electron. Materials
; vol.
29
(
2)
, pp.
244
250
,
2000
.
19.
Knecht
S.
and
Fox
R. R.
, “
Constitutive relation and creep-fatigue life model of eutectic tin-lead solder
,”
IEEE Trans. Comp., Hybrids, & Manufact. Technol.
; vol.
13
(
2)
, pp.
424
433
,
1990
.
20.
Shi
X. Q.
,
Wang
Z. P.
,
Yang
Q. J.
and
Pang
H. L. J.
,
Creep Behavior and Deformation Mechanism Map of Sn-Pb Eutectic Solder Alloy
,”
J. Eng. Mater. Technol.
; vol.
125
, pp.
81
87
,
2003
.
21.
Shi
X. Q.
,
Wang
Z. P.
,
Zhou
W.
,
Pang
H. L. J.
and
Yang
Q. J.
, “
A new creep constitutive model for eutectic solder alloy
,”
ASME J. Electron. Packag.
; vol.
124
(
2)
, pp.
85
90
,
2002
.
22.
Oliver
W. C.
and
Pharr
G. M.
, “
An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
,”
J. Mater. Res.
; vol.
7
(
6)
, pp.
1564
1583
,
1992
.
23.
G. Simmons and H. Wang, “Single crystal elastic constants and calculated aggregate properties: a handbook,” Cambridge, MA: MIT Press; 1971.
24.
Chudoba
T.
and
Richter
F.
, “
Investigation of creep behavior under load during indentation experiments and its influence on hardness and modulus results
”,
Surface & Coatings Technol.
; vol.
148
, pp.
191
198
,
2001
.
25.
D. Tabor, “Hardness of Metals,” Oxford, UK: Oxford University Press; 1951.
This content is only available via PDF.
You do not currently have access to this content.