Over the last decade, considerable interest has been generated in building and manipulating nanoscale structures. Applications of nanomanipulation include study of nanoparticles, molecules, DNA and viruses, and bottom-up nanoassembly. We propose a Nanomanipulation System using the Zyvex S100 nanomanipulator, which operates within a scanning electron microscope (SEM), as its primary component. The primary advantage of the S100 setup over standard scanning probe microscopy based nanomanipulators is the ability to see the object during manipulation. Relying on visual feedback alone to control the nanomanipulator is not preferable due to perceptual limitations of depth and contact within the SEM. To improve operator performance over visual feedback alone, an impedance-controlled bilateral teleoperation setup is envisioned. Lack of on-board force sensors on the S100 system is the primary hindrance in the realization of the proposed architecture. In this paper, we present a computer vision based force sensing scheme. The advantages of this sensing strategy include its low cost and lack of requirement of hardware modification(s). Force sensing is implemented using an atomic force microscopy (AFM) probe attached to the S100 end-effector. Deformation of the cantilever probe is monitored using a Hough transform based algorithm. These deformations are mapped to corresponding end-effector forces following the Euler-Bernoulli beam mechanics model. The forces thus sensed can be used to provide force-feedback to the operator through a master manipulator.

1.
Resch
R.
,
Bugacov
A.
,
Baur
C.
,
Koel
B. E.
,
Madhukar
A.
,
Requicha
A. A. G.
, and
Will
P.
,
1998
. “
Manipulation of Nanoparticles using Dynamic Force Microscopy: Simulation and Experiments
”.
Applied Physics A
,
67
, pp.
265
271
.
2.
Guthold, M., Falvo, M. R., Matthews, W. G., Paulson, S., Washburn, S., Erie, D. A., Superfine, R., Brooks, Jr., F. P., and Taylor II, R. M., 2000. “Controlled Manipulation of Molecular Samples with the nanoManipulator”. IEEE/ASME Transactions on Mechatronics, 5(2).
3.
Guthold
M.
,
Falvo
M.
,
Matthews
W.
,
Paulson
S.
,
Mullin
J.
,
Lord
S.
,
Erie
D.
,
Washburn
S.
,
Superfine
R.
,
Brooks
F. P.
, and
Taylor
R. M.
,
1999
. “
Identification and Modification of Molecular Structures with the nanoManipulator
”.
Journal of Molecular Graphics and Modelling
,
17
, pp.
188
197
.
4.
Guthold
M.
,
Negishi
W. G. M. A.
,
Taylor
R. M.
,
Erie
D.
,
Brooks
F. P.
, and
Superfine
R.
,
1999
. “
Quantitative Manipulation of DNA and Viruses with the nanoManipulator Scanning Force Microscope
”.
Surface and Interface Analysis
,
27
, pp.
437
443
.
5.
Nakajima
M.
,
Arai
F.
, and
Fukuda
T.
,
2006
. “
In Situ Measurement of Young’s Modulus of Carbon Nanotubes Inside a TEM Through a Hybrid Nanorobotic Manipuulation System
”.
IEEE Transactions of Nanotechnology
,
5
(
3)
, May, pp.
243
248
.
6.
Requicha, A. A. G., Baur, C., Bugacov, A., Gazen, B. C., Koel, B. E., Madhukar, A., Resch, R., and Will, P., 1998. “Nano-robotic Assembly of Two-Dimensional Structures”. In IEEE International Conference on Robotics and Automation.
7.
Fukuda
T.
,
Arai
F.
, and
Dong
L.
,
2003
. “
Assembly of Nanodevices with carbon Nanotubes Through Nanorobotic Manipulations
”.
Proceedings of the IEEE
,
91
(
11)
, Nov, pp.
1803
1818
.
8.
Sitti, M., and Hashimoto, H., 1999. “Teleoperated nano scale object manipulation”. In Recent Advances on Mechatronics. Springer Verlag, pp. 322–335.
9.
Sitti, M., Aruk, B., Shintani, K., and Hashimoto, H., 2001. “Development of a Scaled Teleoperation System for Nano Scale Interaction and Manipulation”. In IEEE International Conference on Robotics and Automation, pp. 850–867.
10.
Sitti
M.
, and
Hashimoto
H.
,
2000
. “
Two-Dimensional Fine Particle Positioning Under Optical Microscope using a Piezoresistive Cantilever as Manipulator
”.
Journal of Microelectronics
,
1
(
1)
, pp.
25
48
.
11.
Sitti
M.
, and
Hashimoto
H.
,
2000
. “
Controlled Pushing of Nanoparticles: Modeling and Experiments
”.
IEEE/ASME Transactions on Mechatronics
,
5
(
2)
, Jun, pp.
199
211
.
12.
Taylor, R. M., Robinett, W., Chi, V. L., Brooks, Jr., F. P., Wright, W. V., Williams, R. S., and Snyder, E. J., 1993. “The nanomanipulator: A virtual-reality interface for a scanning tunneling microscope”. In Computer Graphics: Proceedings of SIGGRAPH.
13.
Sitti, M., 2001. “Survey of Nanomanipulation Systems”. In IEEE Conference on Nanotechnology, pp. 75–80.
14.
Eigler
D. M.
, and
Schweitzer
E. K.
,
1990
. “
Positioning single atoms with scanning tunneling microscope
”.
Nature
,
344
, Apr, pp.
524
526
.
15.
Dong
L.
,
Arai
F.
, and
Fukuda
T.
,
2004
. “
Destructive Constructions of Nanostructures with Carbon Nanotubes Through Nanorobotic Manipulation
”.
IEEE/ASME Transactions on Mechatronics
,
9
(
2)
, Jun, pp.
350
357
.
16.
Tortonese
M.
,
Barrett
R. C.
, and
Quate
C. F.
,
1993
. “
Atomic Resolution with an Atomic Force Microscope using Piezoresistive Detection
”.
Applied Physics Letters
,
62
, pp.
834
836
.
17.
Arai, F., Nakajima, M., Dong, L., and Fukuda, T., 2003. “Pico-Newton Order Force Measurement Using a Calibrated Carbon Nanotube Probe by Electromechanical Resonance”. In IEEE International Conference on Robotics and Automation, pp. 300–305.
18.
Arai, F., Nakajima, M., Dong, L., and Fukuda, T., 2003. “The pico-Newton Order Force Measurement with a Calibrated Carbon Nanotube Probe”. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 691–696.
19.
Greminger
M.
, and
Nelson
B. J.
,
2004
. “
Vision-based force measurement
”.
IEEE Transactions on Pattern Analysis and Machine Intelligence
,
26
(
3)
, pp.
290
298
.
20.
http://www-bsac.eecs.berkeley.edu/cadtools/-sugar/Slides/nonlinear/NLBeam.ppt.
21.
Xu
C.
, and
Prince
J. L.
,
1998
. “
Snakes, Shapes and Gradient Vector Flows
”.
IEEE Transactions on Image Processing
,
7
(
3)
, pp.
359
369
.
This content is only available via PDF.
You do not currently have access to this content.