A novel multi-level fuzzy control (MLFC) system is introduced and implemented for online force control of end-milling processes to increase machining productivity and improve workpiece quality, where the cutting force is maintained at its maximum allowable level in the presence of different variations inherent in milling processes, such as tool wear, workpiece geometry and material properties. In the controller design, the fuzzy rules are generated heuristically without any mathematical model of the milling processes. An adaptation mechanism is embedded in to tune the control parameters on-line and the resultant closed-loop system is guaranteed to be stable based on the input-output passivity analysis. In the experiment, the control algorithm is implemented using a National Instrument real-time control computer in an open architecture control environment, where high metal removal rates (MRR) are achieved and the cycle time is reduced by up to 34% over the case without any force controller, and by 22% compared with the regular fuzzy logic controller (FLC), thereby indicating its effectiveness in improving the productivity for actual machining processes.

1.
Das
M. K.
and
Tobias
S. A.
,
1967
, “
The Relation Between the Static and the Dynamic Cutting of Metals
”,
International Journal of Machine Tool Design & Research
, Vol.
7
, pp.
63
89
.
2.
Tomizuka, M., Oh, J. H. and Dornfeld, D. A., 1983, “Model Reference Adaptive Control of the Milling Process”, Proceedings of Control of Manufacturing Processes and Robotic Systems Conference, pp. 55–63.
3.
Altintas
Y.
,
1994
, “
Direct Adaptive Control of End Milling Process
”,
International Journal of Machine Tools & Manufacture
, Vol.
34
, No.
4
, pp.
461
472
.
4.
Lauderbaugh, L. K. and Ulsoy, A. G., 1986, “Model Reference Adaptive Force Control in Milling”, Modeling, Sensing, and Control of Manufacturing Processes, ASME, New York, pp. 165–179.
5.
Lauderbaugh
L. K.
and
Ulsoy
A. G.
,
1989
, “
Model Reference Adaptive Force Control in Milling
”,
Transactions of the ASME, Journal of Engineering for Industry
, Vol.
111
, pp.
13
21
.
6.
Elbestawi
M. A.
and
Sagherian
R.
,
1987
, “
Parameter Adaptive Control in Peripheral Milling
”,
International Journal of Machine Tools & Manufacture
, Vol.
27
, No.
3
, pp.
399
414
.
7.
Elbestawi
M. A.
,
Mohamed
Y.
and
Liu
L.
,
1990
, “
Application of Some Parameter Adaptive Control Algorithms in Machining
”, Transactions of the ASME,
Journal of Dynamic Systems, Measurement, and Control
, Vol.
112
, pp.
611
617
.
8.
Rober
S. J.
and
Shin
Y. C.
,
1996
, “
Control of Cutting Force for End Milling Processes Using an Extended Model Reference Adaptive Control Scheme
”,
Transactions of the ASME, Journal of Manufacturing Science and Engineering
, Vol.
118
, pp.
339
347
.
9.
Hayes, P. D., Shin, Y.C. and Nwokah, O. D. I., 1993, “Robust Control Design for Milling Processes”, DSC-Vol. 50/PED-Vol. 63, ASME Winter Annual Meeting, New Orleans, LA, pp. 119–125.
10.
Rober
S. J.
,
Shin
Y. C.
and
Nwokah
O. D. I.
,
1997
, “
A Digital Robust Controller for Cutting Force Control in the End Milling Process
”, Transactions of the ASME,
Journal of Dynamic Systems, Measurement, and Control
, Vol.
119
, pp.
146
152
.
11.
Kim
S. I.
,
Landers
R. G.
and
Ulsoy
A. G.
,
2003
, “
Robust Machining Force Control with Process Compensation
”,
Transactions of the ASME, Journal of Manufacturing Science and Engineering
, Vol.
125
, pp.
423
430
.
12.
Charbonnaud
P.
,
Carrillo
F. J.
and
Ladeve`ze
D.
,
2001
, “
Monitored Robust Force Control of a Milling Process
”,
Control Engineering Practice
, Vol.
9
, pp.
1047
1061
.
13.
Kim
M. K.
,
Cho
M. W.
and
Kim
K.
,
1994
, “
Application of the Fuzzy Control Strategy to Adaptive Force Control of Non-minimum Phase End Milling Operations
”,
International Journal of Machine Tools & Manufacture
, Vol.
34
, No.
5
, pp.
677
696
.
14.
Haber
R. E.
,
Alique
J. R.
,
Ros
S.
and
Peres
C. R.
,
1996
, “
Fuzzy Supervisory Control of End Milling Processes
”,
Information Sciences
, Vol.
89
, No.
1–2
, pp.
95
106
.
15.
Haber
R. E.
,
Peres
C. R.
,
Alique
A.
,
Ros
S.
,
Gonza´lez
C.
and
Alique
J. R.
,
1998
, “
Toward Intelligent Machining: Hierarchical Fuzzy Control for the End Milling Process
”,
IEEE Transactions on Control Systems Technology
, Vol.
6
, No.
2
, pp.
188
199
.
16.
Haber, R. E., Haber, R. H., Alique, A. and Ros, S., 2000, “Hierarchical Fuzzy Control of the Milling Process with a Self-tuning Algorithm”, Proceedings of the 2000 IEEE International Symposium on Intelligent Control, pp. 115–120.
17.
Xu
C.
and
Shin
Y. C.
,
2005
, “
Design of a Multi-level Fuzzy Controller for Nonlinear Systems and Stability Analysis
”,
IEEE Transactions on Fuzzy Systems
, Vol.
13
, No.
6
, pp.
761
778
.
18.
Farinwata, S. S., Filev, D. and Langari, R., 2000, Fuzzy Control Synthesis and Analysis, John Wiley & Sons, LTD.
19.
Calcev
G.
,
1998
, “
Some Remarks in the Stability of Mamdani Fuzzy Control Systems
”,
IEEE Transactions on Fuzzy Systems
, Vol.
6
, No.
3
, pp.
436
442
.
20.
Aracil, J. and Gordillo, F., 2000, Stability Issues in Fuzzy Control, Physica-Verlag. A Springer-Verlag Company.
21.
Ying
H.
,
1994
, “
Practical Design of Nonlinear Fuzzy Controllers with Stability Analysis for Regulating Processes with Unknown Mathematical Models
”,
Automatica
, Vol.
30
, No.
7
, pp.
1185
1195
.
22.
Ma
C. C. H.
and
Altintas
Y.
,
1990
, “
Direct Adaptive Cutting Force Control of Milling Processes
”,
Automatica
, Vol.
26
, No.
5
, pp.
899
902
.
23.
Rober
S.
and
Shin
Y. C.
,
1995
, “
Modeling and Control of CNC Machines Using a PC-Based Open Architecture Controller
”,
Mechatronics
, Vol.
5
, No.
4
, pp.
401
420
.
24.
Calcev
G.
,
Gorez
R.
and
Neyer
M. De.
,
1998
, “
Passivity Approach to Fuzzy Control Systems
”,
Automatica
, Vol.
34
, No.
3
, pp.
339
344
.
25.
Calcev, G., 1996, “A Passivity Result for Fuzzy Control Systems”, Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, pp. 2727–2728.
This content is only available via PDF.
You do not currently have access to this content.