Supercavitating vehicles can achieve very high speed but also pose technical challenges in maneuvering, system stability and control. Compared to a fully-wetted vehicle for which substantial lift is generated due to vortex shedding off the hull, the supercavitating vehicles are enveloped by gas surface thus the lift is provided by control surface deflections of cavitator and fins, as well as planing force between the vehicle and the cavity. The nonlinearity in the modeling of cavitator, fin, and in particular, the planing force make the control design more challenging. In this paper, a sliding-mode based controller is designed for the longitudinal dynamics of a supercavitating vehicle model. The stability and robustness of the final design are analyzed by the Lyapunov method and verified using simulation. A high-gain observer is also designed to estimate the vertical velocity of the supercavitating vehicle, which is not directly measurable, and then simulation results are presented for the (partial) output-feedback sliding-mode controller.
Skip Nav Destination
ASME 2006 International Mechanical Engineering Congress and
Exposition
November 5–10, 2006
Chicago, Illinois, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
0-7918-4768-3
PROCEEDINGS PAPER
Nonlinear Robust Control Design for a Supercavitating Vehicle
X. Mao
Pennsylvania State University
Q. Wang
Pennsylvania State University
Paper No:
IMECE2006-14519, pp. 57-64; 8 pages
Published Online:
December 14, 2007
Citation
Mao, X, & Wang, Q. "Nonlinear Robust Control Design for a Supercavitating Vehicle." Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Dynamic Systems and Control, Parts A and B. Chicago, Illinois, USA. November 5–10, 2006. pp. 57-64. ASME. https://doi.org/10.1115/IMECE2006-14519
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Rest-to-Rest Motion for Planar Multi-Link Flexible Manipulator Through Backward Recursion
J. Dyn. Sys., Meas., Control (March,2004)
Modeling and Control of a Magnetostrictive Tool Servo System
J. Dyn. Sys., Meas., Control (May,2008)
Modelling, Identification, and Passivity-Based Robust Control of Piezo-actuated Flexible Beam
J. Vib. Acoust (April,2004)
Related Chapters
6DOF motion and Cavity Dynamics of a Ventilated Super-cavitating Vehicle with Control Fins
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Auto-Tuning Method of PIDA Controller Based Ongain Margin and Phase Margin
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Fault-Tolerant Control of Sensors and Actuators Applied to Wind Energy Systems
Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems