The transverse vibrations of two translating strings interconnected by a Winkler elastic foundation, and subjected to axial loading are investigated. The system of governing partial differential equations of this gyroscopic system is cast in the first order canonical form. It is shown that the natural frequencies are composed of two infinite sets, representing in-phase and out-of-phase vibrations of the two strings. The effects of the axial tension ratios of the two continuous media, as well as the effects of the elastic foundation stiffness are investigated. In general, it is found that the natural frequencies increase with increasing elastic stiffness of the foundation. It is found that the elastic foundation does not alter the critical speed, but different mass and tension ratios do.

1.
Hwang
 
S.-J.
, and
Perkins
 
N. C.
,
1992
, “
Supercritical Stability of an Axially Moving Beam Part I: Model and Equilibrium Analysis
,”
Journal of Sound and Vibration
,
154
,
381
396
.
2.
Wickert
 
J. A.
, and
Mote
 
C. A.
,
1990
, “
Classical Vibration Analysis of Axially-Moving Continua
,”
ASME Journal of Applied Mechanics
,
57
(
3)
,
738
744
.
3.
Meirovitch
 
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA Journal
,
12
,
1337
1342
.
4.
Hughes
 
P. C.
, and
D’Eleuterio
 
G. M.
,
1986
, “
Modal Parameter Analysis of Gyroscopic Continua
,”
ASME Journal of Applied Mechanics
,
53
,
918
924
.
5.
Chung
 
C. H.
, and
Tan
 
C. A.
,
1993
, “
Transfer Function Formulation of Constrained Distributed Parameter Systems, Part II: Applications
,”
ASME Journal of Applied Mechanics
,
60
,
1012
1019
.
6.
Bhat
 
R. B.
,
Xistris
 
G. D.
, and
Sanker
 
T. S.
,
1982
, “
Dynamic Behavior of a Moving Belt Supported on Elastic Foundation
,”
ASME Journal of Mechanical Design
,
104
,
143
147
.
7.
Wickert
 
J. A.
,
1994
, “
Response Solutions for the Vibration of a Traveling String on an Elastic Foundation
,”
ASME Journal of Vibration and Acoustics
,
116
(
1)
,
137
139
.
8.
Cheng
 
S. P.
, and
Perkins
 
N. C.
,
1991
, “
The Vibration and Stability of a Friction-Guided, Translating String
,”
Journal of Sound and Vibration
,
144
,
281
292
.
9.
Perkins
 
N. C.
,
1990
, “
Linear Dynamics of a Translating String on Elastic Foundation
,”
Journal of Vibrations and Acoustics
,
112
,
2
7
.
10.
Parker
 
R. G
,
1999
, “
Supercritical Speed Stability of the Trivial Equilibrium of an Axially Moving String on an Elastic Foundation
,”
Journal of Sound and Vibration
,
221
,
205
219
.
11.
Tan
 
C. A.
,
Yang
 
B.
, and
Mote
 
C. D.
,
1990
, “
On the Vibration of Hydrodynamic Bearings
,”
Journal of Vibration and Acoustics
,
112
,
337
345
.
12.
Tan
 
C. A.
, and
Zhang
 
L.
,
1994
, “
Dynamic Characteristics of a Constrained String Translating Across an Elastic Foundation
,”
Journal of Vibration and Acoustics
,
116
,
318
325
.
13.
Chen
 
J. S.
,
1997
, “
Natural frequencies and stability of of an axially-travelling string in contact with a stationary load system
,”
Journal of Vibration and Acoustics
,
119
, pp.
152
157
.
14.
Chakraborty
 
G.
and
Mallik
 
A. K.
,
1999
, “
Nonlinear Vibration of a Traveling Beam Having an Intermediate Guide
”,
Nonlinear Dynamics
,
20
, pp.
247
265
.
15.
Riedel
 
C. H.
and
Tan
 
C. A.
,
1998
, “
Dynamic Characteristics and Mode Localization of Elastically Constrained Axially Moving Strings and Beams
”,
Journal of Sound and Vibration
,
215
, pp.
455
473
.
16.
Fung
 
R. F
,
Chou
 
J.-H
, and
Kuo
 
Y. L
,
2002
, “
Optimal Boundary Control of an Axially Moving Material System
,”
ASME Journal of Dynamic Systems, Measurement, and Control
,
124
,
55
61
.
17.
Fung
 
R. F
,
Huang
 
J. S
,
Chen
 
Y. C
, and
Yao
 
C. M
,
1998
, “
Nonlinear Dynamic Analysis of the Viscoelastic String with a Harmonically Varying Transport Speed
,”
Computers & Structures
,
66
(
6)
,
777
784
.
18.
Cha
 
P. D.
,
2002
, “
Eigenvalues of a Linear Elastica Carrying Lumped Masses, Springs and Viscous Dampers
,”
Journal of Sound and Vibration
,
257
,
798
808
.
19.
Zen
 
G.
,
Mu¨ftu¨
 
S.
,
2006
, “
Stability of an accelerating string subjected to frictional guiding forces
,”
Journal of Sound and Vibration
,
289
, pp.
551
576
.
20.
Cabanska-Placzkiewicz
 
K.
,
1998
, “
Free Vibration oh the System of Two Strings Coupled by a Viscoelastic Interlayer
,”
Engineering Transactions
,
46
,
217
227
.
21.
Oniszczuk
 
Z.
,
2000
, “
Transverse Vibrations of Elastically Connected Double-String Complex System, Part I: Free Vibrations
,”
Journal of Sound and Vibration
,
232
,
355
366
.
22.
Oniszczuk
 
Z.
,
2000
, “
Transverse Vibrations of Elastically Connected Double-String Complex System, Part I: Forced Vibrations
,”
Journal of Sound and Vibration
,
232
,
367
386
.
23.
Oniszczuk
 
Z.
,
2002
, “
Damped Vibration Analysis of a Two-Degree-of-Freedom Discrete System
,”
Journal of Sound and Vibration
,
257
,
391
403
.
24.
Oniszczuk
 
Z.
,
2003
, “
Damped Vibration Analysis of an Elastically Connected Complex Double-String System
,”
Journal of Sound and Vibration
,
264
,
253
271
.
25.
Cheng
 
G.
, and
Zu
 
J. W.
,
2003
, “
Dynamic Analysis of an Optical Fiber Coupler in Telecommunications
,”
Journal of Sound and Vibration
,
268
,
15
31
.
26.
Oniszczuk
 
Z.
,
2002
, “
Free Transverse Vibrations of Elastically Connected Complex Beam-String System
,”
Journal of Sound and Vibration
,
254
,
703
715
.
27.
Graff, K.F., 1975, Wave motion in elastic solids, Ohio State University Press.
28.
Meirovitch
 
L.
,
1975
, “
A Modal Analysis for the Response of Linear Gyroscopic Systems
,”
ASME Journal of Applied Mechanics
,
42
,
446
450
.
29.
Meirovitch, L., 1997, Principles and Techniques of Vibrations, Prentice Hall, NJ, U.S.A.
30.
He
 
S.
and
Rao
 
M. D.
,
1993
, “
Vibration and Damping Analysis of Multi-Span Sandwich Beams with Arbitrarily Boundary Conditions
,”
Journal of Sound and Vibration
,
164
,
125
142
.
31.
Gao
 
J. X
, and
Cheng
 
L.
,
2005
, “
Modeling and Control of power flow in a double-beam system
,”
Thin-Walled Structures
,
43
,
751
771
.
32.
Sokolinsky
 
V. S.
,
Bermen
 
H. F. V.
,
Lavoie
 
J. A.
, and
Nutt
 
S. R.
,
2004
, “
Analytical and Experimental Study of Free Vibration Response f Soft-Core Sandwich Beams
,”
Journal of Sandwich Structures and Materials
,
6
,
239
261
.
This content is only available via PDF.
You do not currently have access to this content.