This paper presents the design and kinematics of a four degree-of-freedom upper extremity rehabilitation robot for stroke therapy, to be used in conjunction with the Mirror Image Movement Enabler (MIME) system. The RiceWrist is intended to provide robotic therapy via force-feedback during range-of-motion tasks. The exoskeleton device accommodates forearm supination and pronation, wrist flexion and extension, and radial and ulnar deviation in a compact design with low friction and backlash. Joint range of motion and torque output of the electric-motor driven device is matched to human capabilities. The paper describes the design of the device, along with three control modes that allow for various methods of interaction between the patient and the robotic device. Passive, triggered, and active-constrained modes, such as those developed for MIME, allow for therapist control of therapy protocols based on patient capability and progress. Also presented is the graphical user interface for therapist control of the interactions modes of the RiceWrist, basic experimental protocol, and preliminary experimental results.

1.
Gresham
G. H.
,
1990
. “
Past Achievements and New Directions in Stroke Outcome Research
”.
Stroke
,
21
(
9 Suppl):II
, pp.
1
2
.
2.
Wolf
P. A.
,
D’Agostino
R. B.
,
O’Neal
M. A.
,
Sytkowski
P.
,
Kase
C. S.
,
Belanger
A. J.
, and
Kannel
W. B.
,
1992
. “
Secular Trends in Stroke Incidence and Mortality: The Framingham Study
”.
Stroke
,
23
, pp.
1551
1555
.
3.
Gresham
G. E.
,
Alexander
D.
,
Bishop
D. S.
,
Giuliani
C.
,
Goldberg
G.
,
Holland
A.
,
Kelly-Hayes
M.
,
Linn
R. T.
,
Roth
E. J.
,
Stason
W. B.
, and
Trombly
C. A.
,
1997
. “
Rehabilitation
”.
Stroke
,
28
(
7)
, pp.
1522
1526
.
4.
Erlandson
R. F.
,
1992
. “
Applications of Robotic/Mechatronic Systems in Special Education, Rehabilitation Therapy
”.
IEEE Trans. Rehab. Eng.
,
3
(
1)
, pp.
22
34
.
5.
Reinkensmeyer
D. J.
,
Dewald
J. P. A.
, and
Rymer
W. Z.
,
1996
. “
Robotic Devices for Physical Rehabilitation of Stroke Patients: Fundamental Requirements, Target Therapeutic Techniques, and Preliminary Designs
.”.
Technology and Disability
,
5
, pp.
205
215
.
6.
Reinkensmeyer
D. J.
,
Takahashi
C. D.
,
Timoszyk
W. K.
,
Reinkensmeyer
A. N.
, and
Kahn
L. E.
,
2000
. “
Design of Robot Assistance for Arm Movement Therapy Following Stroke
”.
Advanced Robotics
,
14
(
7)
, pp.
625
637
.
7.
Khalili
D.
, and
Zomlefer
M.
,
1988
. “
An Intelligent Robotic System for Rehabilitation of Joints and Estimation of Body Segment Parameters
”.
IEEE Trans. Biomed. Eng.
,
35
(
2)
, pp.
138
146
.
8.
Goodall
R. M.
,
Pratt
D. J.
,
Rogers
C. T.
, and
Murray-Leslie
C. M.
,
1987
. “
Enhancing Postural Stability in Hemi-Plegics Using Externally Applied Forces
”.
Intl. J. of Rehab. Research (suppl 5)
,
10
(
4)
, pp.
132
140
.
9.
White, C. J., Scneider, A. M., and Brogan Jr., W. K., 1993. “Robotic Orthosis for Stroke Patient Rehabilitation”. In IEEE Intl. Conf. Eng. Med. Biol., pp. 1272–1273.
10.
Dirette
D.
, and
Hinojosa
J.
,
1994
. “
Effects of Continuous Passive Motion on the Edematous Hands of Two Persons with Flaccid Hemiplegia
”.
American Journal of Occupational Therapy
,
48
(
5)
, pp.
403
409
.
11.
Burgar
C. G.
,
Lum
P.
,
Shor
P. C.
, and
Van der Loos
H. F. M.
,
2000
. “
Development of Robots for Rehabilitation Therapy: The Palo Alto VA/Stanford Experience
”.
Journal of Rehabilitation Research and Development
,
37
(
6)
, pp.
663
673
.
12.
Fasoli
S. E.
,
Krebs
H. I.
, and
Hogan
N.
,
2004
. “
Robotic Technology and Stroke Rehabilitation
”.
Topics in Stroke Rehabilitation
,
11
, pp.
11
19
.
13.
Hogan
N.
, and
Krebs
H. I.
,
2004
. “
Interactive Robots for Neurorehabilitation
”.
Restorative Neurology and Neuroscience
,
22
, pp.
349
358
.
14.
Reinkensmeyer
D. J.
,
Emken
J. L.
, and
Cramer
S. C.
,
2004
. “
Robotics, Motor Learning and Neurologic Recovery
”.
Annual Reviews in Biomedical Engineering
,
6
, pp.
497
525
.
15.
Riener
R.
,
Nef
T.
, and
Colombo
G.
,
2005
. “
Robot-Aided Neurorehabilitation of the Upper Extremeties
”.
Medical and Biological Engineering and Computing
,
43
, pp.
2
10
.
16.
Stein
J.
,
2004
. “
Motor Recovery Strategies after Stroke
”.
Topics in Stroke Rehabiliation
,
11
, pp.
12
22
.
17.
O’Malley, M. K., Ro, T., and Levin, H. S., 2006. “Assessing and Inducing Neuroplasticity with TMS and Robotics”. Archives of PMR, Special Issue on Neuroplasticity and Neuroimaging in Acquired Brain Injury: Measurements, Concepts, and Applications. in review.
18.
Charles, S. K., Krebs, H. I., Volpe, B. T., Lynch, D., and Hogan, N., 2005. “Wrist Rehabilitation Following Stroke: Initial Clinical Results”. In International Conference on Rehabilitation Robotics, pp. 13–16.
19.
Hesse
S.
,
Schulte-Tigges
G.
,
Konrad
M.
,
Bardeleben
A.
, and
Werner
C.
,
2003
. “
Robot Assisted Arm Trainer for the Passive and Active Practice of Bilateral Forearm and Wrist Movements in Hemiparetic Subjects
”.
Archives of Physical Medicine and Rehabilitation
,
84
(
6)
, pp.
915
920
.
20.
Gupta, A., and O’Malley, M. K., 2006. “Design of a Haptic Arm Exoskeleton for Training and Rehabilitation”. IEEE/ASME Trans. Mechatron., 11(3).
21.
Sledd, A., and O’Malley, M. K., 2006. “Performance Enhancement of a Haptic Arm Exoskeleton”. In Int’l Sympo.Haptic Interfaces forVirtual Environ. Teleop. Syst., pp. 375–381.
22.
Lee
K. M.
, and
Shah
D. K.
,
1988
. “
Kinematic Analysis of a Three Degrees-of-Freedom in-Parallel Actuated Manipulator
”.
IEEE Trans. Robot. Automat.
,
4
(
3)
, June, pp.
354
360
.
23.
Yoshikawa
T.
,
1985
. “
Manipulability of Robotic Mechanisms
”.
Int’l J. Robot. Research
,
4
(
2)
, pp.
3
9
.
24.
Tsagarakis, N., Caldwell, D. G., and Medrano-Cerda, G., 1999. “A 7DOF Pneumatic Muscle Actuator Powered Exoskeleton”. In Int’l Workshop Robot and Human Interact. Commun., pp. 327–333.
This content is only available via PDF.
You do not currently have access to this content.