In this paper we compare the performance of Runge-Kutta and novel L-stable real-time (LSRT) integration algorithms for real-time dynamic substructuring testing. Substructuring is a hybrid numerical-experimental testing method which can be used to test critical components in a system experimentally while the remainder of the system is numerically modelled. The physical substructure and the numerical model must interact in real time in order to replicate the behavior of the whole (or emulated) system. The systems chosen for our study are mass-spring-dampers, which have well known dynamics and therefore we can benchmark the performance of the hybrid testing techniques and in particular the numerical integration part of the algorithm. The coupling between the numerical part and experimental part is provided by an electrically driven actuator and a load cell. The real-time control algorithm provides bi-directional coupling and delay compensation which couples together the two parts of the overall system. In this paper we consider the behavior of novel L-stable real-time (LSRT) integration algorithms, which are based on Rosenbrock's method. The new algorithms have considerable advantages over 4th order Runge-Kutta in that they are unconditionally stable, real-time compatible and less computationally intensive. They also offer the possibility of damping out unwanted high frequencies and integrating stiff problems. The paper presents comparisons between 4th order Runge-Kutta and the LSRT integration algorithms using three experimental configurations which demonstrate these properties.
Skip Nav Destination
ASME 2006 International Mechanical Engineering Congress and
Exposition
November 5–10, 2006
Chicago, Illinois, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
0-7918-4768-3
PROCEEDINGS PAPER
A Comparison of Runge Kutta and Novel L-Stable Methods for Real-Time Integration Methods for Dynamic Substructuring
Alicia Gonzalez-Buelga,
Alicia Gonzalez-Buelga
University of Bristol
Search for other works by this author on:
Oreste S. Bursi
Oreste S. Bursi
Universita` degli Studi di Trento
Search for other works by this author on:
Alicia Gonzalez-Buelga
University of Bristol
David Wagg
University of Bristol
Simon Neild
University of Bristol
Oreste S. Bursi
Universita` degli Studi di Trento
Paper No:
IMECE2006-15574, pp. 1219-1227; 9 pages
Published Online:
December 14, 2007
Citation
Gonzalez-Buelga, A, Wagg, D, Neild, S, & Bursi, OS. "A Comparison of Runge Kutta and Novel L-Stable Methods for Real-Time Integration Methods for Dynamic Substructuring." Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Dynamic Systems and Control, Parts A and B. Chicago, Illinois, USA. November 5–10, 2006. pp. 1219-1227. ASME. https://doi.org/10.1115/IMECE2006-15574
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model
J. Dyn. Sys., Meas., Control (September,2000)
Stability and Performance Limits of Interaction Controllers
J. Dyn. Sys., Meas., Control (December,1992)
Nonlinear Dynamic Analysis of a Parametrically Excited Cold Rolling Mill
J. Manuf. Sci. Eng (August,2014)
Related Chapters
Dynamic Behavior in a Singular Delayed Bioeconomic Model
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
Engineering Design about Electro-Hydraulic Intelligent Control System of Multi Axle Vehicle Suspension
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
To-Be-Recorded Analysis inside Derivative Code Compiler
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)