The quality factor of MEMS-based microresonators is often limited due to damping of the resonator structure and the surrounding air. A possible avenue to enhance the quality factor is to incorporate a negative damping feedback to reduce the damping of the resonator for those vibration modes of interest. This method is particularly easy to implement for piezoelectric based microresonators, because piezoelectric materials can serve as a sensor and an actuator simultaneously. This paper first demonstrates the concept on a silicon cantilever with a PZT thin-film actuator and a laser Doppler vibrometer as an external sensing element. Then the paper describes a design of PZT thin-film actuator consisting of a diaphragm suspension and multiple electrodes. Some of the electrodes serve as the sensors and others as actuators to reduce resonator damping. This design can potentially be used for microresonators without using external sensing elements.

1.
Musalem, F., 2001, “MEMS-Based RF Switches,” Mechanical Engineering Design, March, pp. 22–25.
2.
Stevens, F., and DeLellis, J., 2000, “Keeping Heads on Track with Dual-Stage Actuators,” Data Storage, June, pp. 39–44.
3.
McInerney, B., 2000, “Surveying Micro-Positioning Technology for Advanced Disk Drives,” Data Storage, August, pp. 24–27.
4.
Krabach, T., 2000, “Breakthrough Sensor Technology for Space Exploration in the 21st Century”, IEEE, pp. 565–569.
5.
Walker
J. A.
,
2000
, “
The Future of MEMS in Telecommunications Networks
,”
Journal of Micromechanics & Microengineering
, Vol.
10
, pp.
R1–R7
R1–R7
.
6.
Kricka
L. J.
,
2001
, “
Microchips, Microarrays, Biochips, and Nanochips: Personal Laboratories for the 21th Century
,”
Clinica Chimica Acta
, Vol.
307
, pp.
219
223
.
7.
Giordano
N.
and
Cheng
J. T.
,
2001
, “
Microfluid Mechanics: Progress and Opportunities
,”
Journal of Physics: Condensed Matter
, Vol.
13
, pp.
R271–R295
R271–R295
.
8.
Beebe
D. J.
,
Mensing
G. A.
, and
Walker
G. M.
,
2002
, “
Physics and Applications of Microfludics in Biology
,”
Annu. Rev. Biomed. Eng.
, Vol.
4
, pp.
261
286
.
9.
Zhu
X
and
Kim
E. S.
,
1998
, “
Microfludic Motion Generation with Acoustic Waves
,”
Snesors and Actuators A
, Vol.
66
, pp.
355
360
.
10.
Figeys
D.
and
Pinto
D.
,
2000
, “
Lab-on-a-Chip: A Revolution in Biological and Medical Sciences
,”
Analytical Chemistry
, Vol.
2000
, pp.
330A–335A
330A–335A
.
11.
Kakuta
M.
,
Bessoth
F. G.
, and
Manz
A.
,
2001
, “
Microfabricated Devices for Fluid Mixing and Their Application for Chemical Synthesis
,”
The Chemical Record
, Vol,
1
, pp.
395
405
.
12.
Freitas
S.
,
Walz
A.
,
Merkle
H. P.
, and
Gander
B.
,
2003
, “
Solvent Extraction Employing a Static Micromixer: a Simple, Robust, and Versatile Technology for the Microencapsulation of Protein
,”
Journal of Microencapsulation
, Vol.
20
, No.
1
, pp.
67
85
.
13.
Jacobson
S. C.
,
McKnight
T. E.
, and
Ramsey
J. M.
,
1999
, “
Microfludic Devices for Electrokinetically Driven Parallel and Serial Mixing
,”
Analytical Chemistry
, Vol.
71
, pp.
4455
4459
.
14.
Liu
R. H.
,
Yang
J.
,
Pindera
M. Z.
,
Athavale
M.
, and
Grodzinski
P.
,
2002
, “
Bubble-Induced Acoustic Micromixing
,”
Lab on a Chip
, Vol.
2
, pp.
151
157
.
15.
Liu
R. H.
,
Lenigk
R.
,
Druyor-Sanchez
R. L.
,
Yang
J.
, and
Grodzinski
P.
,
2003
, “
Hybridization Enhancement Using Cavitation Microstreaming
,”
Analytical Chemistry
, Vol.
75
, No.
8
, pp.
1911
1917
.
16.
Schweizer
S.
,
Cousseau
P.
,
Lammel
G.
,
Clames
S.
, and
Renaud
P.
,
2000
, “
Two-Dimensional Thermally Actuated Optical Microprojectors
,”
Sensor and Actuator A
, Vol.
85
, pp.
424
429
.
17.
Krulevitch
P.
,
Lee
A. P.
,
Ramsey
P. B.
,
Trevino
J. C.
,
Hamilton
J.
, and
Northrup
M. A.
,
1996
, “
Thin Film Shape Memory Alloy Microactuators
,”
Journal of Microelectromechanical Systems
, Vol.
5
, pp.
270
282
.
18.
Schenk
H.
,
Durr
P.
,
Kunze
D.
,
Lakner
H.
, and
Kuck
J.
,
2001
, “
A Resonantly Excited 2D-Micro-Scanning-Mirror with Large Deflection
,”
Sensors and Actuators A
, Vol.
89
, pp.
104
111
.
19.
Toshiyoshi
H.
,
Piyawattanametha
W.
,
Chan
C.-T.
, and
Wu
M. C.
,
2001
, “
Linearlization of Electrostatically Actuated Surface Micromachined 2-D Optical Scanner
,”
Journal of Microelectromechanical System
, Vol.
10
, pp.
205
214
.
20.
Bourouina
T.
,
Garnier
A.
, and
Fujita
H.
,
2002
, “
Magnetostrictive Microactuators and Application to Two-Dimensional Optical Scanners
,”
Japanese Journal of Applied Physics
, Vol.
41
, pp.
1608
1613
.
21.
Gariner
A.
,
Bourouina
T.
,
Fujita
H.
,
Hiramoto
T.
,
Orsier
E.
, and
Peuzin
J.-C.
,
2000
, “
Magnetic Actuation of Bending and Torsional Vibrations for 2D Optical-Scanner Application
,”
Sensors and Actuators A
, Vol.
84
, pp.
156
160
.
22.
Schroth
A.
,
Lee
C.
,
Matsumoto
S.
, and
Maeda
R.
,
1999
, “
Application of Sol-Gel Deposited Thin PZT Film for Actuation of 1D and 2D Scanners
,”
Sensors and Actuators A
, Vol.
73
, pp.
144
152
.
23.
Tsaur
J.
,
Zhang
L.
,
Maeda
R.
,
Matsumoto
S.
, and
Khumpang
S.
,
2002
, “
Design and Fabrication of 1D and 2D Micro Scanners Actuated by Double Layered Lead Zirconate Titanate (PZT) Bimorph Beams
,”
Japanese Journal of Applied Physics
, Vol.
41
, pp.
4321
4326
.
24.
Veijola, T., Kuisma, H., and Lahdenpera, J., 1997, “Model for Gas Film Damping in a Silicon Accelerometer,” IEEE Proceedings of Transducers, pp 1097–1100.
25.
Arai
F.
,
Andou
D.
,
Nanoda
Y.
, and
Fukuda
T.
,
1996
, “
Micro Manipulation Based on Micro Physics
,”
Microelectromechanical Systems
, ASME DSC-Vol.
59
, pp.
367
372
.
26.
Kolesar
E. S.
,
Allen
P. B.
,
Howard
J. T.
,
Wilken
J. M.
, and
Boydston
N.
,
1999
, “
Thermally-Actuated Cantilever Beam for Achieving Large In-Plane Mechanical Deflections
,”
Thin Solid Films
, Vol.
355–356
, pp.
295
302
.
27.
Judy, J. W., Tamagawa, T., and Polla, D. L., 1990, “Surface Micromachined Linear Thermal Microactuator,” Technical Digest of Electron Devices Meeting, pp. 629–632.
28.
Que, L., Park, J. S., and Gianchandani, Y. B., 1999, “Bent-Beam Electro-Thermal Actuators for High Force Applications,” Proceedings of Twelfth IEEE International Conference on Micro Electro Mechanical Systems, pp. 31–36.
29.
Cragun, R., and Howell, L. L., 1999, “Linear Thermomechanical Microactuators,” ASME 1999 International Mechanical Engineering Congress and Exposition, MEMS-Vol. 1, pp. 181–188.
30.
Tang, W. C., Nguyen, T. H., and Howe, R. T., 1989, “Laterally Driven Polysilicon Resonant Microstrctures,” Proceedings IEEE Mcro Elctro Mechanical Systems, pp. 53–59.
31.
Tang
W. C.
,
Nguyen
T. H.
,
Judy
M. W.
, and
Howe
R. T.
,
1990
, “
Electrostatic-Comb Drive of Lateral Polysilicon Resonators
,”
Transducers ’89, Proceedings of the 5th International Conference on Solid-State Sensors and Actuators and Eurosensorts III
, Vol.
2
, pp.
328
331
.
32.
Riza
N. A.
,
Polla
D. L.
,
Robbins
W. P.
, and
Glumac
D. E.
,
1993
, “
High-Resolution 50 nm Linear Displacement Macroscale Meander-Line PZT Actuator
,”
Electronics Letters
, Vol.
29
(
18)
, pp.
1606
1608
.
33.
Muralt
P.
,
Kholkin
A.
,
Kohli
M.
, and
Maeder
T.
,
1996
, “
Piezoelectric Actuation of PZT Thin-Film Diaphragms at Static and Resonant Conditions
,”
Sensors and Actuators A - Physical
, Vol.
53
, pp.
398
404
.
34.
Luginbuhl
P.
,
Racine
G. A.
,
Lerch
P.
,
Romanowicz
B.
,
Brooks
K. G.
,
deRooij
N. F.
,
Renaud
P.
,
1996
, “
Piezoelectric Cantilever Beams Actuated by PZT Sol-Gel Thin Film
,”
Sensors and Actuators A - Physical
, Vol.
54
(
1–3)
, pp.
530
535
.
35.
Muralt
P.
,
1997
, “
Piezoelectric Thin Films for MEMS
,”
Integrated Ferroelectrics
, Vol.
17
, pp.
297
307
.
This content is only available via PDF.
You do not currently have access to this content.