We consider the response of a continuously deformable mirror with discrete MEMS actuators. The mirror itself is described with a geometrically exact shell model incorporating both flexural and extensional strains, while the MEMS actuators are represented as discrete elements subject to a time-dependent voltage. A reduced-order model is developed through a Galerkin reduction and the resulting equations are subjected to the method of multiple scales. The response of the system is then analyzed to uncover the ability of the system follow desired mirror profiles.

1.
Beckers
J. M.
,
1993
, “
Adaptive Optics for Astronomy: Principles, Performance, and Applications
,”
Annu. Rev. Astro. Astrophys.
,
31
, pp.
13
62
.
2.
Walker
J. A.
,
2000
, “
The Future of MEMS in Telecommunications Networks
,”
J. of Micromech. Microeng.
,
10
, pp.
R1–R2
R1–R2
.
3.
Cowan
W. D.
,
Lee
M. K.
,
Welsh
B. M.
,
Bright
V. M.
, and
Roggemann
M. C.
,
1999
, “
Surface Micromachined Segmented Mirrors for Adaptive Optics
,”
IEEE J. of Selected Topics in Quantum Electronics
,
5
(
1)
, pp.
90
101
.
4.
Bifano
T. G.
,
Mali
R. K.
,
Perreault
J.
,
Dorton
K.
,
Vandelli
N.
,
Horentein
M.
, and
Castanon
D.
,
1997
, “
Continuous-membrane Surface-micromachined Silicon Deformable Mirror
,”
Opt. Eng.
,
36
(
5)
, pp.
1354
1360
.
5.
Mali
R. K.
,
Bifano
T. G.
, and
Vandelli
N.
,
1997
, “
Development of Microelectromechanical Deformable Mirrors for Phase Modulation of Light
,”
Opt. Eng.
,
36
(
2)
, pp.
542
548
.
6.
Miller
M. H.
,
Perrault
J. A.
,
Parker
G. G.
,
Bettig
B. P.
, and
Bifano
T. A.
,
2006
, “
Simple Models for Piston-type Micromirror Behavior
,”
J. Micromech. Microeng.
,
16
, pp.
303
313
.
7.
Libai, A., and Simmonds, J. G., 1998, The Nonlinear Theory of Elastic Shells, Cambridge University Press, Cambridge, 2nd ed.
This content is only available via PDF.
You do not currently have access to this content.