In this research, we develop a general methodology for the vibration control of nonlinear rotating beam. The dynamic model of a rotating Euler-Bernoulli beam integrated with piezoelectric actuator is formulated. An integral sliding mode control design is proposed for the vibration suppression of the system with nonlinear coupling effects between the hub rotation and the beam transverse vibration. The sliding surface is constructed using part of the system states, and the rotating hub dynamics is treated as the internal dynamics of the system under the condition that the states of the zero dynamics are bounded. The robust stability of the proposed controller is also guaranteed. A series of simulation studies demonstrate that the proposed control method can effectively suppress the beam vibrations induced by the hub rotation and the external disturbance.

1.
Cai
G.-P.
,
Hong
J.-Z.
, and
Yang
S. X.
,
2004
, “
Model study and active control of a rotating flexible cantilever beam
,”
International Journal of Mechanical Sciences
, V
46
, pp.
871
889
.
2.
Kane
T. R.
,
Ryan
R. R.
, and
Bannerjee
A. K.
,
1987
, “
Dynamics of a cantilever beam attached to a moving base
,”
Journal of Guidance, Control, and Dynamics
, V
10
, pp.
139
151
.
3.
Kammer
D. C.
, and
Schlack
A. L.
,
1987
, “
Effects of nonconstant spin rate on the vibration of a rotating beam
,”
ASME Journal of Applied Mechanics
, V
54
, pp.
305
310
.
4.
Choura
S.
,
Jayasuriya
S.
,
Medick
M. A.
,
1991
, “
On the modeling and open-loop control of a rotating thin flexible beam
,”
ASME Journal of Dynamic Systems, Measurement, and Control
, V
113
, pp.
26
33
.
5.
Yoo
H. H.
, and
Shin
S. H.
,
1998
, “
Vibration analysis of rotating cantilever beams
,”
Journal of Sound and Vibration
, V
212
, pp.
807
828
.
6.
Pesheck
E.
,
Pierre
C.
,
Shaw
S. W.
,
2002
, “
Modal reduction of a nonlinear rotating beam through nonlinear normal modes
,”
ASME Journal of Vibration and Acoustics
, V
124
, pp.
229
236
.
7.
Zhu
W. D.
, and
Mote
C. D.
,
1997
, “
Dynamics modeling and optimal control of rotating Euler-Bernoulli beams
,”
ASME Journal of Dynamic Systems, Measurement, and Control
, V
119
, pp.
802
808
.
8.
Diken
H.
,
2000
, “
Vibration control of a rotating Euler-Bernoulli beam
,”
Journal of Sound and Vibration
, V
232
, pp.
541
551
.
9.
Na
S.
,
Librescu
L.
, and
Shim
J. K.
,
2003
, “
Modeling and bending vibration control of nonuniform thin-walled rotating beams incorporating adaptive capabilities
,”
International Journal of Mechanical Sciences
, V
45
, pp.
1347
1367
.
10.
Choi
S.-B.
, and
Han
M. S.
,
2004
, “
Vibration control of a rotating cantilevered beam using piezoactuators: experimental work
,”
Journal of Sound and Vibration
, V
277
, pp.
436
442
.
11.
Sun
D.
, and
Mills
J. K.
,
2002
, “
Control of a rotating cantilever beam using a torque actuator and a distributed piezoelectric polymer actuator
,”
Applied Acoustics
, V
63
, pp.
885
899
.
12.
Yang
J. B.
,
Jiang
L. J.
, and
Chen
D. Ch.
,
2004
, “
Dynamic modeling and control of a rotating Euler-Bernoulli beam
,”
Journal of Sound and Vibration
, V
274
, pp.
863
875
.
13.
Baz
A.
, and
Ro
J.
,
2001
, “
Vibration control of rotating beams with active constrained layer damping
,”
Smart Materials and Structures
, V
10
, pp.
112
120
.
14.
Fung
E. H. K.
,
Zou
J. Q.
, and
Lee
H. W. J.
,
2004
, “
Lagrangian formulation of rotating beam with active constrained layer damping in time domain analysis
,”
ASME Journal of Mechanical Design
, V
126
, pp.
359
364
.
15.
Utkin
V. I.
,
1993
, “
Sliding mode control design principle and applications to electrical drives
,”
IEEE Transactions on Industrial Electronics
, V
40
, pp.
23
36
.
16.
Zhou
F.
and
Fisher
D. G.
,
1992
, “
Continuous sliding mode control
,”
International Journal of Control
, V
55
, pp.
313
327
.
17.
Slotine, J.-J.E, and Li, W., 1991, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ.
18.
Khalil, H.K., 2002, Nonlinear Systems, 3rd Edition, Prentice-Hall, Englewood Cliffs, NJ.
This content is only available via PDF.
You do not currently have access to this content.