The vibration characteristics of the vocal folds are investigated using a finite element model which incorporates the in-homogeneity and anisotropy of the materials and the irregularity of the geometry. The model employs the cover and body theory to build the structure of the vocal folds and implements measured viscoelastic properties of the mucosa and the transverse isotropic elastic properties of the muscles. It has the potential to simulate some vocal-fold disorders and determine the change in characteristics. To determine the oscillation characteristics of the folds, the eigenfrequency and eigenmodes of the finite element model are determined using the ABAQUS software. The model results compare well with some experiments performed on a silicon vocal fold. It is anticipated that the model will help to identify voice disorders such as vocal-fold paralysis and vocal-fold nodules.

1.
Flanagan
J.
, and
Landgraf
L.
Self-oscillating source for vocal-tract synthesizers
.
IEEE Trans. Audio Eletroacoust
1968
;
16
pp:
57
64
.
2.
Ishizaka
K.
, and
Flanagan
J. L.
Synthesis of voiced sounds from a two-mass model of the vocal cords
.
Bell Syst. Tech. J
1972
;
51
pp:
1233
1268
.
3.
Story
B. H.
, and
Titze
I. R.
Voice simulation with a body-cover model of the vocal folds
.
Journal of Acoustical Society of America
1995
;
97
(
2)
pp:
1249
1260
.
4.
Berry
D. A.
, and
Titze
I. R.
Normal modes in a continuum model of vocal fold tissues
.
Journal of Acoustical Society of America
1996
;
100
pp:
3345
3354
.
5.
Alipour
F.
,
Berry
D. A.
, and
Titze
I. R.
A finite-element model of vocal-fold vibration
.
Acoustic Society of America
2000
;
108
(
6)
pp:
3003
3012
.
6.
Gunter
H. E.
A mechanical model of vocal-fold collision with high spatial and temporal resolution
.
Acoustic Society of America
2003
;
113
(
2)
pp:
994
1000
.
7.
Titze, I.R. Principles of voice production. Iowa City, Ia: National Center for Voice and Speech; 2000.
8.
Kakita, Y., Hirano, M., and Ohmaru, K. Vocal fold physiology. Tokyo: University of Tokyo Press; 1981.
9.
Importance of water in the diet. Available from: <http://www.chem.duke.edu/~jds/cruise_chem/water/watdie t.html> [Accessed 12/12/2005]
10.
Hunter
E. J.
,
Titze
I. R.
, and
Alipour
F.
A three-dimensional model of vocal fold abduction/adduction
.
Journal of Acoustical Society of America
2003
;
115
(
4)
pp:
1747
1759
.
11.
Chan
R. W.
, and
Titze
I. R.
Viscoelastic shear properties of human vocal fold mucosa: Mearsurement methodology and empirical results
.
Journal of Acoustical Society of America
1999
;
106
(
4)
pp:
2008
2021
.
12.
Alipour
F.
, and
Titze
I. R.
Elastic models of vocal fold tissues
.
Journal of Acoustical Society of America
1991
;
90
(
3)
pp:
1326
31
.
13.
Titze
I. R.
, and
Talkin
D. T.
A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation
.
Acoustic Society of America
1979
;
66
(
1)
pp:
60
74
.
14.
Scherer
R. C.
,
Shinwari
D.
,
De Witt
Kenneth J.
,
Zhang
C.
,
Kucinschi
B. R.
, and
Afjeh
A. A.
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees
.
Journal of Acoustical Society of America
2001
;
109
(
4)
pp:
1616
1630
.
15.
Mantha, S., Mongeau, L., and Siegmund, T. Dynamic digital image correlation of a dynmaic physical model of the vocal folds. In: International Mechanical Engineering Congress and Exposition; Orlando, Florida USA: ASME, 2005:1–2.
16.
Hirano, M. Phonosurgery: Basic and clinical inverstigations. In: Official Report of the 76th Annual Convention of the Oto-Rhino-Laryngological Society of Japan, 1975.
17.
Condensation cured silicones. Available from: <http://www.barnesproducts.com.au/BarnesRTV.pdf> [Accessed 09/09/2005]
18.
Meirovitch, L. Fundamentals of vibrations. New York: McGraw-Hill; 2001.
19.
Harris, C. M., Piersol, A. G. Harris’ shock and vibration handbook. New York: McGraw-Hill; 2002.
20.
Svec
J. G.
,
Horacek
J.
,
Sram
F.
, and
Vesely
J.
Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations
,.
Journal of Acoustical Society of America
2000
;
108
(
4)
pp:
1397
1407
.
21.
Kaneko, T., Komatsu, K., Suzuki, H., Kanesaka, T., Masuda, T., Numata, T. and Naito, J. Mechanical properties of the human vocal fold - resonance characteristics in living humans and in excised larynges. In: Vocal fold physiology: Biomechanics, acoustics, and phonatory control (Titze, I.R. and Scherer, R.C. editors). Denver, CO: The Denver Center for the Performing Arts. 1983; pp. 304–317
22.
Kaneko, T., Masuda, T., Shimada, A., Suzuki, H., Hayasaki, K. and Komatsu, K. Resonance characteristics of the human vocal folds in vivo and in vitro by an impulse excitation. In: Laryngeal function in phonation and respiration (Baer, T., Sasaki, C. and Harris, K. editors). Boston: Little, Brown. 1986; pp. 349–377
23.
Berry
D. A.
, and
Titze
I. R.
Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillationswith empirical eigenfunctions
.
Journal of Acoustical Society of America
1994
;
95
(
6)
pp:
3595
3604
.
This content is only available via PDF.
You do not currently have access to this content.