This paper presents a study on physically based modeling and simulation of soft tissue deformation, with the goal of producing realistic, real-time effects during the simulation. We consider soft tissue deformation as a solid mechanics problem with a linear elastic constitutive law. A point collocation based meshfree method is employed to solve the governing equations. To achieve real-time performance, an octree data structure is used to organize the support sets and the nodes to expedite the computation in the meshfree method. The developed system brings together the surface representation for visualization and meshfree modeling for physically based animation to set up a virtual reality environment for soft tissue surgery simulation.

1.
Aluru
N. R.
A point collocation method based on reproducing kernel approximations
.
International Journal for Numerical Methods in Engineering
2000
;
47
:
1083
1121
.
2.
Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall, Englewood Cliffs, New Jersey.
3.
Bro-Nielsen, M. Finite element modeling in surgery simulation. Proceedings of the IEEE: Special Issue on Surgery Simulation 1998; 490–503.
4.
Bro-Nielsen
M.
, and
Cotin
S.
Real-time volumetric deformable models for surgery simulation using finite elements and condensation
. In
proceedings of Eurographics’96-Computer Graphics Forum 1996
; Volume
15
:
57
66
.
5.
Cotin
S.
,
Delingette
H.
, and
Ayache
N.
A hybrid elastic model allowing real-time cutting, deformation and force-feedback for surgery training and simulation
. In the
Visual Computer Journal
,
2000
;
16
(
8)
:
437
452
.
6.
De
S.
,
Hong
J-W.
, and
Bathe
K. J.
On the method of finite spheres in applications: towards the use with ADINA and in a surgical simulator
.
Computational Mechanics
2003
;
31
:
27
37
.
7.
Fries, T-P., Matthies, H-G. Classification and overview of meshfree methods. Technical Report, TU Brunswick, Germany Nr. 2003–03 (revised), 2004.
8.
Gibson, S., Samosky, J., Mor, A., Fyock, C., Grimson, E., Kanade, T., Kikinis, R., Lauer, H., McKenzie, N., Nakajima, S., Ohkami, H., Osborne, R., and Sawada, A. Simulating arthroscopic knee surgery using volumetric object representations, real-time volume rendering and haptic feedback. Proc. Computer Vision and Virtual Reality in Medicine and Medical Robotics and Computer Assisted Surgery 1997; 369–378.
9.
James, D. L., and Pai, D. K. Accurate real time deformable objects. In SIGGRAPH Proceedings 1999; 65–72.
10.
Kim
D. W.
, and
Kim
Y-S
.
Point collocation methods using the fast moving least square reproducing kernel approximation
.
International Journal for Numerical Methods in Engineering
2003
;
56
:
1445
1464
.
11.
Kim, J., De, S., and Srinivasan, M. A. Physically-based hybrid approach in real time surgical simulation with force feedback. Medicine Meets Virtual Reality Conference 11, J.D. Westwood et al. (Eds.), IOS Press 2003; 158–164,
12.
Kim, J., De, S. and Srinivasan, M. A. An integral equation based multiresolution modeling scheme for multimodal medical simulations. Proceedings of the 11th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Los Angeles, CA, IEEE Computer Society 2003; 221–228
13.
Klaas
O
,
Shephard
M. S.
Automatic generation of octree-based three-dimensional discretizations for partition of unity methods
.
Computational Mechanics
2000
;
25
:
296
304
.
14.
Koch, R. M., Gross, M. H., and Carls, F. R. Simulating facial surgery using finite element models. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH 1996; 421–428.
15.
Liu, G. R. Mesh-Free Methods. CRC Press, 2002.
16.
Liu
W. K.
,
Jun
S.
, and
Zhang
Y. F.
Reproducing kernel particle methods
.
International Journal of Numerical Methods in Fluids
. 1995;
20
:
1081
1106
.
17.
Liu
W. K.
,
Li
S.
, and
Belytschko
T.
Moving least squares reproducing kernel mehods (I) Methodology and Convergence
.
Computer Methods in Applied Mechanics ad Engineering
1997
;
143
:
113
154
.
18.
Mauch, S. A fast algorithm for computing the closest point and distance function, Technical. Report 2000. CalTech.
19.
McDonnell, K. T., Qin, H. Dynamic sculpting and animation of free-form subdivision solids. The Visual Computer 2002; 81–96.
20.
McDonnell, K. T., Qin, H., and Wlodarczyk, R. A. Virtual clay: a real-time sculpting system with haptic toolkits. 2001 ACM Symposium on Interactive 3D Graphics, March 2001; 179–190.
21.
Monaghan
J. J.
An introduction to SPH
.
Journal of Computer Physics Communications
1988
;
48
(
1)
:
89
96
.
22.
O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. Graphical modeling and animation of ductile fracture. In SIGGRAPH Proceedings 2002; 291–294.
23.
O’Brien, J. F., and Hodgins, J. K. Graphical modeling and animation of brittle fracture. In SIGGRAPH Proceedings 1999; 137–146.
24.
Samet, H. The Design and Analysis of Spatial Data Structures. Addison-Wesley: Reading, MA, 1990.
25.
Yamaguchi
K.
,
Kunii
T. L.
,
Fujimura
K.
, and
Toriya
H.
Octree-related data structures and algorithms
.
IEEE Computer Graphics and Applications
1984
;
4
(
1)
:
53
59
.
This content is only available via PDF.
You do not currently have access to this content.