This study develops a recursive-iterative algorithm for analyzing nonlinear viscoelastic responses of orthotropic materials. The algorithm is derived based on implicit stress integration solutions within a general displacement based finite element (FE) framework for small deformations and uncoupled thermo-mechanical problems. The Schapery's nonlinear single integral model is generalized for stress-temperature-time dependent responses of an orthotropic medium. The time-dependent compliance follows material symmetry, which leads to nine independent time integral equations. A recursive method is used to solve the time-dependent integral model. An incremental iterative algorithm is added in order to minimize error arising from the linearized strain formulation in the recursive method. Furthermore, a consistent tangent stiffness matrix is formulated to enhance equilibrium and avoid divergence. The recursive-iterative numerical formulation is implemented within the ABAQUS general purpose FE code. Available experimental data on nonlinear viscoelastic responses of orthotropic laminated composite materials are used to verify the above numerical algorithm.

1.
ABAQUS, Hibbitt, Karlsso and Sorensen, Inc. (2005), User’s Manual, Version, 6.5.
2.
Feng, W. W., (1992), “A Recurrence Formula for Viscoelastic
3.
Haj-Ali
and
Muliana
(
2004
), “
Numerical Finite Element Formulation of the Schapery Nonlinear Viscoelastic Material Model
,”
Int. J. Numerical Meth. in Eng.
, Vol.
59
(1), pp.
25
45
.
4.
Halpin
J. C.
and
Pagano
N. J.
(
1968
), “
Observation on Linear Anisotropic Viscoelasticity
,”
J. Composite Materials
, Vol.
2
, No.
1
, pp.
68
81
.
5.
Henriksen
M.
(
1984
), “
Nonlinear Viscoelastic Stress Analysis - A Finite Element Approach
,”
Computer and Structures
, vol.
18
, no.
1
, pp.
133
139
.
6.
Hilton
H.
and
Yi
S
(
1993
), “
Anisotropic Viscoelastic FE Analysis of Mechanically and Hygrothermally Loaded Composites
,”
Composite Engineering
,
pp
.
123
135
.
7.
Kaliske
M
and
Rothert
H.
(
1997
), “
Formulation and Implementation of Three-dimensional Viscoelasticity at Small and Finite Strain
,”
Computational Mechanics
,
19
pp.
228
239
.
8.
Kennedy
T. C.
(
1998
), “
Nonlinear Viscoelastic Analyses of Composite Plates and Shells
,”
Composite Structures
,
41
, pp.
265
272
.
9.
Lai
J.
,
Bakker
A
(
1996
)., “
3-D Schapery Representation for Nonlinear Viscoelasticity and Finite Element Implementation
,”
Computational Mechanics
,
18
, pp.
182
191
.
10.
Lou
Y. C.
,
Schapery
R. A.
(
1971
), “
Viscoelastic Characterization of a Nonlinear Fiber-Reinforced Plastic
,”
Journal of Composite Materials
,
5
pp.
208
234
.
11.
Peretz
D.
,
Weitsman
Y
(
1982
). “
Nonlinear Viscoelastic Characterization of FM-73 adhesive
.”
Journal of Rheology
Vol.
26
(n
3)
:
245
261
.
12.
Poon
H.
and
Ahmad
F.
(
1998
), “
A Material Point Time Integration Procedure for Anisotropic, Thermo-rheologically Simple, Viscoelastic Solids
,”
Computational Mechanics
,
21
, pp.
236
242
.
13.
Poon
H.
and
Ahmad
F.
(
1999
), “
A Finite Element Constitutive Update Scheme for Anisotropic, Viscoelastic Solids Exhibiting Non-linearity of The Schapery Type
,”
International Journal of Numerical Method in Engineering
, vol.
46
, pp.
2027
2041
.
14.
Rajagopal
K. R.
and
Srinivasa
A. R.
(
2005
), “
A Note On a Correspondence Principle in Nonlinear Viscoelastic Materials
,”
Int. J. Fracture
,
131
, pp.
47
52
.
15.
Schapery
R. A.
(
1974
), “
Viscoelastic Behavior and Analyses of Composite Materials
,”
Composite Material
, Vol.
5
, pp.
85
168
.
16.
Simo, J.C., and Hughes, T.J.R. (1998), Computational Inelasticity, Springer-Verlag, NY.
17.
Taylor
R. L.
,
Pister
K. S.
, and
Goudreau
G. L.
(
1970
), “
Thermomechanical Analysis of Viscoelastic Solids
,”
International Journal for Numerical Methods in Engineering
, Vol.
2
, pp.
45
59
.
18.
Walruth
D. E.
(
1991
). “
Viscoelastic response of a unidirectional composite containing two viscoelastic constituents
.”
Experimental Mechanics
Vol.
31
(
2)
:
111
117
.
19.
Yi
S.
,
Hilton
H. H.
, and
Ahmad
M. F.
(
1996
)., “
Nonlinear Thermo-Viscoelastic Analysis of Interlaminar Stresses in Laminated Composites
,”
Journal Applied Mechanics
, Vol.
63
, pp.
218
224
.
20.
Zocher
M. A.
,
Groves
S. E.
, and
Allen
D. H
(
1997
), “
A Three-dimensional Finite Element Formulation for Thermoviscoelastic Orthotropic Media
,”
Int. J. Numerical Method in Eng.
, Vol.
40
, pp.
2267
2280
.
This content is only available via PDF.
You do not currently have access to this content.