There is an urgent need for miniaturized sensors that can rapidly, accurately, and specifically detect extremely low concentrations of chemical and biological materials. Such technologies impact many areas including public health, drug development and national defense. Along with other research groups in industry and academia, we are developing new microfabricated sensors based on differential mobility spectrometry - also known as high field asymmetric ion mobility spectrometry. These sensors are suitable for rapid diagnosis of various pulmonary diseases and respiratory pathogens, and they may also be used for explosives and narcotics detection when configured and tuned to detect different chemical signatures. Similarly, we are also applying variations on this technology for the early detection of biological weapons agents. Given the extensive work being performed by many different research groups in many different specialties, there is now a need for a coherent and exhaustive look at the similarities and differences of detection in medical, pharmaceutical, defense and security applications and how these may influence system level designs.

1.
Shvartsburg
AA
,
Mashkevich
SV
,
Smith
RD
,
2004
, “
Modeling the Resolution and Sensitivity of FAIMS Analyses
J Am Soc Mass Spectrom.
,
15
, pp.
1487
1498
.
2.
Purves
R.
,
Guevremont
R.
,
2005
, “
Comparison of Experimental and Calculated Peak Shapes for Three Cylindrical Geometry FAIMS Prototypes of Differing Electrode Diameters
,”
J Am Soc Mass Spectrom.
,
16
, pp.
349
362
3.
Guevremont
R.
,
Thekkadath
G.
,
Hilton
C. K.
,
2005
, “
Compensation Voltage (CV) Peak Shapes Using a Domed FAIMS with the Inner Electrode Translated to Various Longitudinal Positions
,”
J Am Soc Mass Spectrom
,
16
, pp.
948
956
4.
Krebs M.D., Kang J.M., Cohen S.J., Lozow J.B., Tingley R.D., Davis C.E., 1982, “Two-dimensional alignment of differential mobility spectrometer data,” Sensors and Actuators B (accepted, in press).
5.
Krebs
M. D.
,
Tingley
R. D.
,
Zeskind
J. E.
,
Holmboe
M. E.
,
Kang
J. M.
,
Davis
C. E.
, “
Alignment of gas chromatography-mass spectrometry data by landmark selection from complex chemical mixtures
,”
Chemometrics and Intelligent Laboratory Systems
,
81
, pp.
74
81
6.
Bereton R.G., 2003, “Chemometrics: Data Analysis for the Laborotory and the Chemical Plant,” John Riley and Sons, Chichester.
7.
Krebs
M. D.
,
Tingley
R. D.
,
Zeskind
J. E.
,
Holmboe
M. E.
,
Kang
J. M.
,
Davis
C. E.
,
2004
Autoregressive modeling of analytical sensor data can yield can classifiers in the predictor coefficient parameter space
,”
Bioinformatics
21
(
8)
, pp.
1325
31
.
8.
Shvartsburg
A. A.
,
Teng
K.
,
Smith
R. D.
,
2004
, “
Understanding and Designing Field Asymmetric Waveform Ion Mobility Spectrometry Separations in Gas Mixtures
,”
Analytical Chemistry
,
6
(
24)
, pp.
7366
7374
.
9.
Shvartsburg
AA
,
Mashkevich
SV
,
Smith
RD
,
2006
,
Feasibility of Higher-Order Differential Ion Mobility Separations Using New Asymmetric Waveforms
,
J. Phys.
Chem. A.,
110
, pp.
2663
2673
10.
Barnett
D. A.
,
Ells
B.
,
Guevremont
R.
,
2000
, “
Evaluation of Carrier Gases for Use in High-Field Asymmetric Waveform Ion Mobility Spectrometry
,”
J Am Soc Mass Spectrom
,
11
, pp.
1125
1133
11.
Barnett
D. A.
,
Purves
R. W.
,
Ells
B.
,
Guevremontl
R.
,
2000
, “
Separation of o-, m- and p-phthalic acids by high-field asymmetric waveform ion mobility spectrometry (FAIMS) using mixed carrier gases
,”
J. Mass Spectrom.
35
, pp.
976
980
12.
Eiceman G.A., Karpas Z., 2005, “Ion Mobility Spectrometry, 2nd Edition,” CRC Press, Boca Raton, pp. 155–163
13.
Eiceman
G. A.
,
Krylov
E. V.
,
Krylova
N. S.
,
Nazarov
E. G.
,
Miller
R. A.
,
2004
, “
Separation of Ions from Explosives in Differential Mobility Spectrometry by Vapor-Modified Drift Gas
,”
Analytical Chemistry
,
76
, pp.
4937
4944
14.
Krebs
M. D.
,
Mansfield
B
,
Yip
P
,
Cohen
S. J.
,
Sonenshein
A. L.
,
Hitt
B. A.
,
Davis
C. E.
,
2006
Novel technology for rapid species-specific detection of Bacillus spores
,”
Biomolecular Engineering
23
(
2)
, pp.
119
127
.
15.
Zechman
J. M.
;
Labows
J. N.
, “
Volatiles of Pseudomonas aeruginosa and related species by automated headspace concentration–gas chromatography
,”
Can. J. Microbiol.
1985
,
31
, pp.
232
237
.
16.
Schmidt
H
,
Tadjimukhamedov
F
,
Mohrenz
IV
,
Smith
GB
,
Eiceman
GA
,
2004
Microfabricated Differential Mobility Spectrometry with Pyrolysis Gas Chromatography for Chemical Characterization of Bacteria
,”
Analytical Chemistry
,
76
,
5208
5217
17.
Shnayderman
M
,
Mansfield
B
,
Yip
P
,
Clark
H. A.
,
Krebs
M. D.
,
Cohen
S. J.
,
Zeskind
J. E.
,
Ryan
E. T.
,
Dorkin
H. L.
,
Callahan
M. V.
,
Stair
T. O.
,
Gelfand
J. A.
,
Gill
C. J.
,
Hitt
B.
,
Davis
C. E.
,
2005
Species-Specific Bacteria Identification Using Differential Mobility Spectrometry and Bioinformatics Pattern Recognition
,”
Analytical Chemistry
,
77
(
18)
, pp.
5930
5937
18.
Rainsberg
M. R.
,
Harrington
P. B.
,
2005
Thermal Desorption Solid-Phase Microextraction Inlet for Differential Mobility Spectrometry
,”
Applied Spectroscopy
,
59
(
6)
, pp.
754
762
19.
Venne K, Bonneil E, Eng K, Thibault P, 2005, “Improvement in Peptide Detection for Proteomics Analyses Using NanoLC-MS and High-Field Asymmetry Waveform Ion Mobility Mass Spectrometry,” 77, pp. 2176–2186
This content is only available via PDF.
You do not currently have access to this content.