Atherosclerotic plaques may rupture without warning and cause acute cardiovascular syndromes such as heart attack and stroke. Mechanical image analysis using MRI-based models with fluid-structure interactions (FSI) and MRI-determined material properties may improve the accuracy of plaque vulnerability assessment and rupture predictions. A plaque-phantom was set up to acquire plaque MR images under pressurized conditions. The 3D nonlinear modified Mooney-Rivlin (M-R) model was used to describe the material properties with parameters selected to fit the MRI data. The Navier-Stokes equations were used as the governing equations for the flow model. The fully-coupled FSI models were solved by ADINA. Our results indicate that doubling parameter values in the M-R model led to 12.5% decrease in structure maximum principal stress (Stress-P1) and 48% decrease in maximum principal strain (Strain-P1). Flow maximum shear stress (MSS) was almost unchanged. Results from a modified carotid plaque with 70% stenosis severity (by diameter) showed that Stress-P1 at the plaque throat from the wall-only model is 145% higher than that from the FSI model. MSS from a flow-only model is about 40% higher than that from the FSI model. This approach has the potential to develop non-invasive patient screening and diagnosis methods in clinical applications.

1.
American Heart Association. 2003, Heart Disease and Stroke Statistics-2003 Update. Dallas, TX. American Heart Association.
2.
American Heart Association. 2005, Heart Disease and Stroke Statistics - 2005 Update.
3.
Fuster, V., 1998, The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification, Co-Editors: Cornhill, J.F., Dinsmore, R.E., Fallon, J.T., Insull, W., Libby, P., Nissen, S., Rosenfeld, M.E., Wagner, W.D., Futura Publishing, NY.
4.
Fuster, V., Stein, B., Ambrose, J.A., Badimon, L., Badimon, J.J., Chesebro, J.H., 1990, “Atherosclerotic plaque rupture and thrombosis, evolving concept,” Circulation. 82 Supplement H, pp. II-47-II-59.
5.
Giddens
D. P.
,
Zarins
C. K.
,
Glagov
S.
,
1993
, “
The role of fluid mechanics in the localization and detection of atherosclerosis
,”
J. Biomech. Engng
.
115
, pp.
588
594
.
6.
Naghavi
M.
,
Libby
P.
,
Falk
E.
,
Casscells
S. W.
,
Litovsky
S.
,
Rumberger
J.
,
Badimon
J. J.
,
Stefanadis
C.
,
Moreno
P.
,
Pasterkamp
G.
,
Fayad
Z.
,
Stone
P. H.
,
Waxman
S.
,
Raggi
P.
,
Madjid
M.
,
Zarrabi
A.
,
Burke
A.
,
Yuan
C.
,
Fitzgerald
P. J.
,
Siscovick
D. S.
,
de Korte
C. L.
,
Aikawa
M.
,
Juhani
Airaksinen K. E.
,
Assmann
G.
,
Becker
C. R.
,
Chesebro
J. H.
,
Farb
A.
,
Galis
Z. S.
,
Jackson
C.
,
Jang
I. K.
,
Koenig
W.
,
Lodder
R. A.
,
March
K.
,
Demirovic
J.
,
Navab
M.
,
Priori
S. G.
,
Rekhter
M. D.
,
Bahr
R.
,
Grundy
S. M.
,
Mehran
R.
,
Colombo
A.
,
Boerwinkle
E.
,
Ballantyne
C.
,
Insull
W.
,
Schwartz
R. S.
,
Vogel
R.
,
Serruys
P. W.
,
Hansson
G. K.
,
Faxon
D. P.
,
Kaul
S.
,
Drexler
H.
,
Greenland
P.
,
Muller
J. E.
,
Virmani
R.
,
Ridker
P. M.
,
Zipes
D. P.
,
Shah
P. K.
,
Willerson
J. T.
,
2003
, “
From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I
,”
Circulation
,
108
(
14)
, pp.
1664
1672
.
7.
Naghavi
M.
, (same as above),
2003
,
From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II
,
Circulation
,
108
(
15)
, pp.
1772
78
.
8.
Boyle
J. J.
,
1997
, “
Association of coronary plaque rupture and atherosclerotic inflammation
,”
J. Pathology.
181
, pp.
93
99
.
9.
Friedman
M. H.
,
Giddens
D. P.
,
2005
. “
Blood flow in major blood vessels - modeling and experiments
,”
Annals of Biomedical Engineering
,
33
(
12)
, pp.
1710
1713
.
10.
Ku
D. N.
,
Giddens
D. P.
,
Zarins
C. K.
,
Glagov
S.
,
1985
, “
Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress
,”
Arteriosclerosis
.
5
, pp.
293
302
.
11.
Tang
D.
,
Yang
C.
,
Zheng
J.
,
Woodard
P. K.
,
Saffitz
J. E.
,
Petruccelli
J. D.
,
Sicard
G. A.
,
Yuan
C.
,
2005
, “
Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment
,”
Annals of Biomedical Engineering
,
33
(
12)
, pp.
1789
1801
.
12.
Tang
D.
,
Yang
C.
,
Zheng
J.
,
Woodard
P. K.
,
Saffitz
J. E.
,
Sicard
G. A.
,
Pilgram
T. K.
,
Yuan
C.
,
2005
, “
Quantifying effects of plaque structure and material properties on stress behaviors in human atherosclerotic plaques using 3D FSI models
,”
J. Biomech. Engng
,
127
(
7)
, pp.
1185
1194
.
13.
Tang
D.
,
Yang
C.
,
Zheng
J.
,
Woodard
P. K.
,
Sicard
G. A.
,
Saffitz
J. E.
,
Yuan
C.
,
2004
, “
3D MRI-based multi-component FSI models for atherosclerotic plaques, a 3D FSI model
,
Annals Biomed. Engng
,
32
(
7)
, pp.
947
960
.
14.
Suri, J.S., Laxminarayan, S., 2003, Angiography and Plaque Imaging, CRC Press, New York.
15.
Ohayon
J.
,
Teppaz
P.
,
Finet
G.
,
Rioufol
,
2001
,
In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method
.
Coronary Artery Disease
,
12
, pp.
655
663
.
16.
Pedersen, P.C., Chakareski, J., Lara-Montalvo. R., 2003, “Ultrasound characterization of arterial wall structures based on integrated backscatter profiles,” Proc. for the 2003 SPIE Med Imaging Symposium, San Diego, pp. 115–126.
17.
Yuan
C.
,
Kerwin
W. S.
,
2004
, “
MRI of atherosclerosis
,”
Journal of Magnetic Resonance Imaging
.
19
(
6)
, pp.
710
719
.
18.
Yuan
C.
,
Mitsumori
L. M.
,
Beach
K. W.
,
Maravilla
K. R.
,
2001
, “
Special review: carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions
,”
Radiology
,
221
, pp.
285
299
.
19.
Cai
J. M.
,
Hatsukami
T. S.
,
Ferguson
M. S.
,
Small
R.
,
Polissar
N. L.
,
Yuan
C.
,
2002
, “
Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging
,”
Circulation
.
106
, pp.
1368
1373
.
20.
Hatsukami
T. S.
,
Ross
R.
,
Polissar
N. L.
,
Yuan
C.
,
2000
, “
Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging
,”
Circulation
,
102
(
9)
, pp.
59
64
.
21.
Fayad
Z. A.
,
Fallon
J. T.
,
Shinnar
M.
,
Wehrli
S.
,
Dansky
H. M.
,
Poon
M.
,
Badimon
J. J.
,
Charlton
S. A.
,
Fisher
EA
,
Breslow
JL
,
Fuster
V.
,
1998
, “
Noninvasive in vivo high-resolution MRI of atherosclerotic lesions in genetically engineered mice
,”
Circulation
.
98
, pp.
1541
1547
.
22.
Brossollet
L. J.
,
Vito
R. P.
,
1995
, “
An alternate formulation of blood vessel mechanics and the meaning of the in vivo property
,”
J. Biomechanics
.
28
, pp.
679
687
.
23.
Chandran
K. B.
,
Mun
J. H.
,
Choi
K. K.
,
Chen
J. S.
,
Hamilton
A
,
Nagaraj
A
,
McPherson
D. D.
,
2003
, “
A method for in-vivo analysis for regional arterial wall material property alterations with atherosclerosis: preliminary results
,”
Medical Engineering & Physics
.
25
, pp.
289
298
.
24.
Steinman
D. A.
,
Taylor
C. A.
,
2005
, “
Flow imaging and computing: large artery hemodynamics
,”
Annals of Biomedical Engineering
,
33
(
12)
, pp.
1704
1709
.
25.
Kaazempur-Mofrad
M. R.
,
Isasi
A. G.
,
Younis
H. F.
,
Chan
R. C.
,
Hinton
D. P.
,
Sukhova
G.
,
Lamuraglia
G. M.
,
Lee
R. T.
,
Kamm
R. D.
,
2004
, “
Characterization of the Atherosclerotic Carotid Bifurcation Using MRI, Finite Element Modeling, and Histology
,”
Annals of Biomedical Engineering
,
32
(
7)
, pp.
932
946
.
26.
Huang
H.
,
Virmani
R.
,
Younis
H.
,
Burke
A. P.
,
Kamm
R. D.
,
Lee
R. T.
,
2001
, “
The impact of calcification on the biomechanical stability of atherosclerotic plaques
,”
Circulation
,
103
, pp.
1051
1056
.
27.
Lee
R. T.
,
Schoen
F. J.
,
Loree
H. M.
,
Lark
M. W.
,
Libby
P.
, “
Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture
,”
Arterioscler Thromb Vasc Biol.
16
, pp.
1070
1073
.
28.
Loree
H.
,
Kamm
R. D.
,
Stringfellow
R. G.
,
Lee
R. T.
,
1992
, “
Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels
,”
Circ. Res.
,
71
, pp.
850
58
.
29.
Long
Q.
,
Xu
X. Y.
,
Ariff
B.
,
Thom
S. A.
,
Hughes
A. D.
,
Stanton
A. V.
,
2000
, “
Reconstruction of blood flow patterns in a human carotid bifurcation: A combined CFD and MRI study
,”
Journal of Magnetic Resonance Imaging
,
11
, pp.
299
311
.
30.
Williamson
S. D.
,
Lam
Y.
,
Younis
H. F.
,
Huang
H.
,
Patel
S
,
Kaazempur-Mofrad
M. R.
,
Kamm
R. D.
,
2003
, “
On the sensitivity of wall stresses in diseased arteries to variable material properties
,”
J. Biomech. Engineering
,
125
, pp.
147
155
.
31.
Bathe, K. J. 1996, Finite Element Procedures, Prentice Hall, Inc. New Jersey.
32.
Bathe, K.J., 2002, Theory and Modeling Guide, Vol I: ADINA; Vol II: ADINA-F, ADINA R & D, Inc., Watertown, MA.
This content is only available via PDF.
You do not currently have access to this content.