High-density magnetic hard disks are key components in information storage. In high-density hard disk drives (HDD), both super fast track seeking and extremely accurate positioning of the read/write head are required. A new multiDOF piezoelectric micro-actuator with nano-transverse and micro-lateral control of the head positioning system for highdensity hard disk drives is proposed. For the track following control of a head positioning system in the HDD, proper modeling of the system including the voice coil motor (VCM), suspension, slider, and gimbal system is very important. Before further comprehensive analysis of the whole assembly, the design concept and the evaluation of the micro-actuator are focused on in this paper. First, design of the new piezoelectric micro-actuator is illustrated. The design of the new micro-actuator is based on the axial deformation of piezoelectric elements for lateral motion control and the bimorph actuation of piezoelectric elements for transverse nm motion control. Next, mathematical models of the micro-actuator system are defined. Lastly, the micro-actuator system is modeled using the commercial finite element package ANSYS. The results from analytical analysis and FE analysis are compared. Static response of the micro-actuator system is evaluated first, followed by analysis of dynamic response analysis. Static actuations of the new actuator system satisfy both lateral (±0.1μm) and transverse (15nm) specifications. Dynamic analysis of the ultra-precision system suggests that the new piezoelectric micro-actuator improves performance of highdensity hard disk drives by increasing servo bandwidth and decreasing flying height.

1.
Hitachi Global Storage Technologies 2005 http://www.hitachigst.com/hdd/technolo/overview/storagetechc hart.html
2.
Evans
R. B.
,
Griesbach
J. S.
1999
Piezoelectric microactuator for dual stage control
,”
IEEE Trans. Magn.
Vol.
35
, No.
2
, pp.
977
982
.
3.
Niu
Y.
,
Guo
W.
,
Guo
G.
,
Ong
E.
,
Sivadasan
K.
, and
Huanpg
T.
2000
A PZT micro-actuated suspension for high TPI hard disk servo systems
,”
IEEE Trans. Magn.
Vol.
36
, No.
5
, pp.
2241
2243
.
4.
Kobayashi
M.
and
Horowitz
R.
2001
Track seek control for hard disk dual-stage servo systems
,”
IEEE Trans. Magn.
Vol.
37
, No.
2
, pp.
949
954
.
5.
Koganezawa
S.
and
Hara
T.
2001
Development of shear-mode piezoelectric microactuator for precise head positioning
,”
FUJITSU Sci. Tech. J.
, Vol.
37
, No.
2
, pp.
212
219
.
6.
Soeno
Y.
,
Ichikawa
S.
,
Tsuna
T.
,
Sato
Y.
and
Sato
I.
1999
Piezoelectric piggy-back microactuator for hard disk drive
,”
IEEE Trans. Magn.
Vol.
35
, No.
2
, pp.
983
987
.
7.
Kuwajima
H.
and
Matsuoka
K.
2001
Thin-film piezoelectric DSA for HDD
,”
IEEE Trans. Magn.
Vol.
38
, No.
5
, pp.
2186
2188
.
8.
Fan
L. S.
,
Hirano
T.
,
Hong
J.
,
Webb
P. R.
,
Juan
W. H.
,
Lee
W. Y.
,
Chan
S.
,
Semba
T.
,
Imaino
W.
,
Pan
T. S.
,
Pattanaik
S.
,
Lee
F. C.
,
Mcfadyen
I.
,
Arya
S.
,
Wood
R.
.
1999
Electrostatic microactuator and design considerations for HDD applications
,”
IEEE Trans. Magn.
Vol.
35
, No.
2
, pp.
1000
1005
.
9.
Jabbar
M. A.
,
Jia
W. i
, and
Yang
J.
2004
Simulation and optimization of an electrostatic microactuator for HDD head positioning
,”
IEEE Trans. Magn.
vol.
40
, No.
4
, pp.
3174
3176
.
10.
Kim
B.
and
Chun
K.
2001
Fabrication of an electrostatic track-following micro actuator for hard disk drives using SOI wafer
,”
J. Micromech. Microeng.
Vol.
11
, pp.
1
6
.
11.
Toshiyoshi
H.
,
Mita
M.
, and
Fujita
H.
2002
A MEMS piggyback actuator for hard-disk drives
,”
J. Microelectromechanical systems
, Vol.
11
, No.
6
, pp.
648
654
.
12.
Lim
S.
,
Park
J.
,
Choi
S. K
, and
Park
Y.
2001
Non-contact start/stop motion control of HDD suspension using shape memory alloy actuators
,”
Smart Mater. Struct.
Vol.
10
, pp.
1069
1077
.
13.
Tagawa
N.
,
Kitamura
K.
, and
Mori
A.
2002
Development of novel PZT thin films for active sliders based load/unload on head demand systems
,”
Microsystem Technologies
Vol.
8
, pp.
133
138
.
14.
Kurita
M.
and
Suzuki
K.
2004
Flying-height adjustment technologies of magnetic head sliders
,”
IEEE Trans. Magn.
Vol.
40
, No.
1
, pp.
332
336
.
15.
Tagawa
N.
,
Kitamura
K. I.
, and
Mori
A.
2003
Design and fabrication of MEMS-based active slider using double-layered composite PZT thin film in hard disk drives
,”
IEEE Trans. Magn.
Vol.
39
, No.
2
, pp.
926
931
.
16.
Liu
B.
,
Zhu
Y. L.
,
Li
Y. H.
,
H
W.
,
Leng
Q. F.
and
Sheng
G.
1999
An experimental study of slider vibration in nanometer spaced head-disk interface
,”
IEEE Trans. Magn.
vol.
35
, No.
5
, pp.
2463
2465
.
17.
Liu
X.
,
Li
A.
,
Clegg
W.
,
Jenkins
F. L.
, and
Davey
P.
2002
Head-disk spacing variation suppression via active flying height control
,”
IEEE Trans. instrumentation and measurement
, Vol.
51
, No.
5
, pp.
897
901
.
18.
Qio
J.
,
Tani
J.
,
Ueno
T.
,
Morita
T.
,
Takahashi
H.
and
Du
H.
2003
Fabrication and high durability of functionally graded piezoelectric bending actuators
,”
Smart Mater. Struct.
Vol
12
, No.
1
, pp.
113
121
.
19.
H. S. Tzou 1989 “Development of a light-weight robot end-effector using polymeric piezoelectric bimorph,” IEEE international conference on robotics and automation, pp. 1704–1709.
20.
H. S. Tzou 1993 “Piezoelectric Shells: Distributed Sensing and Control of Continua,” Kluwer Academic Publishers Dordrecht, The Netherlands.
21.
Karagulle
H.
,
Malgaca
L.
and
Oktem
H. F.
2004
Analysis of active vibration control in smart structures by ANSYS
,”
Smart Mater. Struct.
Vol
13
, pp.
661
667
.
This content is only available via PDF.
You do not currently have access to this content.