A micro flywheel energy storage system has been developed using a high temperature superconductor bearing. In the previous paper, the micro flywheel was fabricated and successfully rotated 38,000 rpm in the vacuum chamber. However, there are the large drag torque because of the non-axisymmetric magnetic flux of the motor/bearing magnet and the eddy current loss in the planar stator, which makes short spin-down time as 20~30 sec and coefficient of friction as 0.15. This paper presents the design, fabrication and electromagnetic analysis of the flywheel to reduce the large drag torque. The advanced flywheel is made up of motor and bearing magnet, aluminium disk, and magnetic screening disk. The maximum rotational speed is up to 51,000 rpm and furthermore the spin-down time is about 3 hr 20 min in the vacuum condition. From these results, the coefficient of friction is calculated as 0.001~0.002.

1.
B. V. Jayawant, 1981, “Electromagnetic Levitation and Suspension Techniques”, Edward Arnold.
2.
Hellman
F.
,
Gyorgy
E. M.
,
Johnson
D. W.
,
O’Bryan
H. M.
, and
Sherwood
R. C.
,
1987
, “
Levitation of a Magnet over a Flat Type II Superconductor
”,
J. Appl. Phys.
, Vol.
63
,
No. 2
,
447
450
.
3.
Wang
J. S.
,
Wang
S. Y.
,
Ren
Z. Y.
,
Jiang
H.
,
Zhu
M.
,
Wang
X. R.
,
Shen
X. M.
, and
Song
H. H.
,
2003
, “
Experiment results of high temperature superconducting Maglev vehicle
”,
Physica C
, Vol.
386
,
431
437
.
4.
Fukasawa
Y.
and
Ohsaki
H.
,
1999
, “
Three-Dimensional Structure of Magnetic Field in the Mixed micro Levitation System using Bulk Superconductors
”,
IEEE Trans. Appl. Supercond.
Vol.
9
,
No. 2
,
980
983
.
5.
F. N. Werfel, U. Floegel-Delor, R. Rothfeld, B. Coebel, D. Wippich, and T. Riedel, 2005, “Modelling and construction of a compact 500 kg HTS magnetic bearing”, Superconductor Science and Technology, 18, 19–23.
6.
Day
A. C.
,
Strasik
M.
,
McCray
K. E.
,
Johnson
P. E.
,
Gabrays
J. W.
,
Schindler
J. R.
,
Hawkins
R. A.
, and
Carlson
D. L.
,
2002
, “
Design and testing of the HTS bearing for a 10 kWh flywheel system
”,
Superconductor Science and Technology
,
15
,
838
841
.
7.
T. H. Sung. J.S. Lee, Y. H. Han, S. C. Han, S. K. Choi, and S. J. Kim, 2002, “300 Wh class superconductor flywheel energy storage system with a horizontal axle”, Physica C, 372–376, 1451–1456.
8.
Miyagawa
Y.
,
Kameno
H.
,
Takahata
R.
, and
Ueyama
H.
,
1999
, “
A 0.5 kWh Flywheel Energy Storage System using A High Temperature Superconducting Magnetic Bearing
”,
IEEE Trans. Appl. Supercond.
, Vol.
9
,
No. 2
,
996
999
.
9.
Mulcahy
T. M.
,
Hull
J. R.
,
Uherka
K. L.
, and
Niemann
R. C.
,
1999
, “
Flywheel Energy Storage Advances Using HTS Bearings
”,
IEEE Trans. Appl. Supercond.
, Vol.
9
,
No. 2
,
297
300
.
10.
Kim
B.
,
Ko
J.
,
Jeong
S.
, and
Lee
S. S.
,
2006
, “
Experiment and analysis for a small-sized flywheel energy storage system with a high-temperature superconductor bearing
”,
Superconductor Science and Technology
,
19
,
217
222
.
11.
Niknejad
A. M.
and
Meyer
R. G.
,
2001
, “
Analysis of Eddy-Current Losses Over Conductive Substrates with Applications to Monolithic Inductors and Transformers
”,
IEEE Transaction on Microwave Theory and Techniques
, Vol.
49
,
No. 1
,
166
176
.
12.
John
R Hull
,
2000
, “
Topical Review: Superconducting bearing
”,
Superconductor Science and Technology
,
13
,
R1–R15
R1–R15
.
13.
Moon
F. C.
,
Chang
P. -Z.
,
Hojaji
H.
,
Barkatt
A.
, and
Thorpe
A. N.
,
1990
, “
Levitation Forces, Relaxation and Magnetic Stiffness of Melt-Quenched YBCO”, Japan
.
J. Appl. Phys.
, Vol.
29
,
1257
1258
.
14.
Mulcahy
T. M.
,
Hull
J. R.
, and
Uherka
K. L.
1996
, “
A Permanent Magnet Rotor for a High Temperature Superconducting Bearing
”,
IEEE Transaction on Magnetics
, Vol.
32
,
No. 4
,
2609
2612
.
This content is only available via PDF.
You do not currently have access to this content.