In this paper, we investigate the adhesion energy at the interface between single wall carbon nanotubes and polyethylene matrix with and without an external magnetic field. The carbon nanotubes are of two different chiralities — armchair (10,10), and zigzag (10,0), and the external high magnetic field is of 25 Tesla intensity. The study employs molecular dynamics simulations and concludes that the magnetic field decreases the interfacial adhesion energy although it increases the individual potential energies of the nanotubes, the polyethylene, and the composite.

1.
Lordi
V.
, and
Yao
N.
,
2000
, “
Molecular Mechanics of Binding in Carbon Nanotube-Polymer Composites
,”
J. Materials Research
,
15
, pp.
2770
2779
.
2.
Choi
E. S.
,
Brooks
J. S.
,
Eaton
D. L.
,
Al-Haik
M. S.
,
Hussaini
M. Y.
,
Garmestani
H.
,
Li
D.
, and
Dahmen
K.
,
2003
, “
Enhancement of Thermal and Electrical Properties of Carbon Nanotube Polymer Composites by Magnetic Field Processing
,”
J. Applied Physics
,
94
, pp.
6034
6039
.
3.
Garmestani
H.
,
Al-Haik
M. S.
,
Dahmen
K.
,
Tannenbaum
R.
,
Li
D. S.
,
Sablin
S. S.
, and
Hussaini
M. Y.
,
2003
, “
Polymer-Mediated Alignment of Carbon Nanotubes Under High Magnetic Fields
,”
Advanced Materials
,
15
, pp.
1918
1921
.
4.
Qian
D.
,
Dicky
E. C.
,
Andrews
R.
, and
Rantell
T.
,
2000
, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Applied Physics Letters
,
76
, pp.
2868
2870
.
5.
Wei, C., Cho, K., and Srivastava, D., 2001, “Chemical bonding of polymer carbon nanotube,” MRS Spring Meeting Proceeding Paper.
6.
Liao
K.
, and
Li
S.
,
2001
, “
Interfacial Characteristics of a Carbon Nanotube-Polystyrene Composite System
,”
Applied Physics Letters
,
79
, pp.
4225
4227
.
7.
Frankland
S. J. V.
,
Caglar
A.
,
Brenner
D. W.
, and
Griebel
M.
,
2002
, “
Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces
,”
J. Physical Chemistry B
,
106
, pp.
3046
3048
.
8.
Frankland
S. J. V.
, and
Harik
V. M.
,
2003
, “
Analysis of Carbon Nanotube Pull-Out From a Polymer Matrix
,”
Surface Science
,
52
, p.
L103–L108
L103–L108
.
9.
Al-Haik, M., Hussaini, M.Y., and Garmestani, H., 2005, “Adhesion Energy in Carbon Nanotube-Polyethylene Composite: Effect of Chirality,” J. Applied Physics, 97, Paper No. 074306.
10.
Chang
B. H.
,
Liu
Z. Q.
,
Sun
L. F.
,
Tang
D. S.
,
Zhou
W. Y.
,
Wang
G.
,
Qian
L. X.
,
Xie
S. S.
,
Fen
J. H.
, and
Wan
M. X.
,
2000
, “
Conductivity and Magnetic Susceptibility of Nanotube/Polypyrrole Nanocomposites
,”
J. Low Temperature Physics
,
119
, pp.
41
48
.
11.
Dresselhaus
M. S.
,
Dresselhaus
G.
, and
Saito
R.
,
1995
, “
Physics of Carbon Nanotubes
,”
Carbon
,
33
, pp.
883
891
.
12.
Mensah
S. Y.
,
Allotey
F. K. A.
,
Mensah
N. G.
and
Nkrumah
G.
,
2001
, “
Differential Thermopower of a CNT Chiral Carbon Nanotube
,”
J. Physics-Condensed Matter
,
13
, pp.
5653
5662
.
13.
Liang
S. D.
, and
Xu
N. S.
,
2003
, “
Chirality effect of singlewall carbon nanotubes on field emission
,”
Applied Physics Letters
,
83
, pp.
1213
1215
.
14.
Natsuki
T.
,
Tantrakarn
K.
, and
Endo
M.
,
2004
, “
Prediction of elastic properties for single-walled carbon nanotubes
,”
Carbon
,
42
, pp.
39
45
.
15.
Leach, A.R., 2001, Molecular Modeling Principles and Applications, 2nd edition, Prentice Hall, Essex, England.
16.
Rizzo
R. C.
, and
Jorgensen
W. L.
,
1999
, “
OPLS All-Atom Model for Amines: Resolution of the Amine Hydration Problem
,”
J. American Chemical Society
,
121
, pp.
4827
4836
.
17.
Lue
L.
, and
Blankschtein
D.
,
1992
, “
Liquid-State Theory of Hydrocarbon Water-Systems - Application to Methane, Ethane and Propane
,”
J. Physical Chemistry
,
96
, pp.
8582
8594
.
18.
Jorgensen
W. L.
,
Maxwell
D. S.
, and
TiradoRives
J.
,
1996
, “
Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
,”
J. American Chemical Society
,
118
, pp.
11225
11236
.
19.
Kaminski
G.
, and
Jorgensen
W. L.
,
1996
, “
Performance of the AMBER94, MMFF94, and OPLSAA force fields for modeling organic liquids
,”
J. Physical Chemistry
,
100
, pp.
18010
18013
.
20.
Weber
T. A.
, and
Annan
N. D.
,
1982
, “
Molecular-Dynamics of Small Alkanes in An External Force-Field
,”
Molecular Physics
,
46
, pp.
193
209
.
21.
Tian
P.
,
Bedrov
D.
,
Smith
G. D.
,
Glaser
M.
, and
Maclennan
J. E.
,
2002
, “
A Molecular-Dynamics Simulation Study of the Switching Dynamics of a Nematic Liquid Crystal Under an Applied Electrical Field
,”
J. Chemical Physics
,
117
, pp.
9452
9459
.
22.
Spreiter
Q.
, and
Walter
M.
,
1999
, “
Classical Molecular Dynamics Simulation with the Velocity Verlet Algorithm at Strong External Magnetic Fields
,”
J. Computational Physics
,
152
, pp.
102
119
.
23.
Andersen
H. C.
,
1980
, “
Molecular Dynamics Simulations at Constant Pressure and-or Temperature
,”
J. Chemical Physics
,
72
, pp.
2384
2393
.
24.
Dudek
M. J.
, and
Ponder
J. W.
,
1995
, “
Accurate Modeling of the Intramolecular Electrostatic Energy of Proteins
,”
J. Computational Chemistry
,
16
, pp.
791
816
.
25.
Zhu
C. Y.
,
Byrd
R. H.
,
Lu
P. H.
, and
Nocedal
J.
,
1997
, “
Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization
,”
ACM Transactions on Mathematical Software
,
23
, pp.
550
560
.
26.
Gulseren, O., Yildirim, T., and Ciraci, S., 2002, “Systematic Ab-initio Study of Curvature Effects in Carbon Nanotubes,” Physical Review B, 65, Art. No. 153405.
27.
Al-Haik, M.S., and Hussaini, M.Y., “Molecular Dynamics Simulation of Magnetic Field Induced Orientation of Nanotube-Polymer Composite,” J. Applied Physics (in review).
This content is only available via PDF.
You do not currently have access to this content.