Electrorheological (ER) fluids are suspensions of polarizable particles dispersed in insulating liquids. They exhibit a rapid and reversible transition from a liquid-like to a solid-like state upon the application of an electric field. The observed shear stress - shear rate hysteresis makes the precise control of the ER mechanical devices very difficult. Hysteresis behavior of TiO2 ER fluids were observed by varying particle concentration, electric field strength, maximum shear rate, and the time of hysteresis loop. In the absence of an electric field, the stress level of the up curve exceeds that of the down curve. The presence of an electric field, reverses this trend. The extent of hysteresis becomes more significant with increasing electric field strength, particle concentration, and maximum shear rate. Hysteresis behavior of TiO2 ER fluids seems to arise mainly due to the change of the particle structure during shearing. To describe the complex rheological behavior of ER fluids, a kinetic theory is presented. Model predictions show qualitative agreement with the experimental hysteresis data.

1.
Hartsock
D. L.
,
Novak
R. F.
, and
Chaundy
G. J.
,
J. Rheol.
,
35
,
1305
1305
(
1991
).
2.
Brennan
M. J.
,
Day
M. J.
, and
Randall
R. J.
,
Smart Mater. Struct.
,
4
,
83
83
(
1995
).
3.
W. A. Bullough, Miscellaneous Electro-rheological Phenomena — part I. Proceedings of the 2nd International Conference on ER Fluids, edited by J. D. Carlson, A. F. Sprecher and H. Conrad, pp. 115–123 (1989).
4.
Han
Y. M.
,
Lim
S. C.
,
Lee
H. G.
,
Choi
S. B.
, and
Choi
H. J.
,
Hysteresis Identification of Polymethylaniline-based ER Fluid using Preisach model
.
Mater. and Design
,
24
,
53
53
(
2003
).
5.
Choi
H. J.
and
Jhon
M. S.
,
Hysteresis Behavior of Poly (Naphthalene Quinone) Radical Electrorheological Fluid
,
Int. J. Mod. Phys. B
,
13
,
1901
1901
(
1999
).
6.
R. Aizawa, S. L. Vieira, and M. Nakano, Hysteresis Phenomena in Flow-Curve of ER Fluids Containing Sulfonated Polymer Particles. Proceedings of the 7th International Conference on ER Fluids and MR Suspensions, edited by R. Tao, pp. 595–602 (1999).
7.
Soong
D.
and
Shen
M.
,
Shear-rate Dependent Viscosity of Non-Newtonian Suspensions and Entangled Polymer Systems
.
Polym. Eng. Sci.
,
20
,
1177
1177
(
1980
).
8.
Liu
T.
,
Soong
D.
, and
De Kee
D.
,
A Model for Structural Fluids
,
Chem. Eng. Commun.
,
22
,
273
273
(
1983
).
9.
De Kee
D.
and
Fong
C. F. Chan Man
,
Rheological Properties of Structured Fluids
,
Polym. Eng. Sci.
,
34
,
438
438
(
1994
).
10.
De Kee
D.
and
Fong
C. F. Chan Man
,
Elongation, Hysteresis, and Oscillatory Flows of Complex Fluids
,
Polym. Eng. Sci.
,
35
,
1031
1031
(
1995
).
11.
M. Parthasarathy and D. J. Klingenberg, Electrorheology: Mechanisms and Models, Maters. Sci. Eng. R17, 57 (1996).
12.
Minagawa
K.
,
Kimura
H.
,
Takimoto
J.
, and
Koyama
K.
,
Electrorheological Normal Stress Measurements of Polymer Solutions and Suspensions
.
Int. J. Mod. Phys. B
.
10
,
3237
3237
(
1996
).
13.
Yang
I. K.
,
Elongational Flow of a Liquid Crystalline Polymer Solution under a Transverse Electric Field
,
J. Rheol.
,
46
,
1
(
200)
200)
.
14.
P. J. Carreau, D. De Kee, and R. P. Chhabra, in “Rheology of polymeric Systems: Principles and Applications,” Hanser/Gardner, New York, NY (1997).
15.
Barnes
H. A.
,
Thixotropy-a Review
,
J. Non-Newtonian Fluid. Mech.
,
70
,
1
1
(
1997
).
16.
F. E. Filisko, S. Henley, and G Quist, Recent Development in the Properties and Composition of ER Fluids, Proceedings of the 4th International Conference on Intelligent Materials ICIM ’98, ed. By T. Takagi, M. Aizawa, T. Okano, N. Shiaya, 114 (1998).
17.
Minagawa
K.
,
Kimura
H.
,
Takimoto
J.
, and
Koyama
K.
,
Electrorheological Normal Stress Measurements of polymer solutions and suspensions
.
Int. J. Mod. Phys. B
,
10
,
3237
3237
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.