Previous work on the development of multi-level boundary element methods (MLBEM) has produced dramatic computational efficiencies compared to traditional methods. However, for problems involving the oscillatory kernels associated with the Helmholtz equation, the performance improvements demonstrated to date have been limited due to the presence of coarse mesh Nyquist constraints. In the present paper, we examine an extension of the original Helmholtz MLBEM to remove these limitations, based on a polar decomposition of the kernels and field variables originally proposed by Brandt. In this initial numerical implementation of these ideas, the algorithm is applied to a pair of two-dimensional half-space problems and, therefore, is limited to the fast evaluation of Rayleigh integrals. In general, excellent performance is achieved. For example, in the second problem with a non-dimensional wave number equal to 105, we obtain speed-up factors of approximately 300,000 versus a traditional BEM approach, while maintaining comparable levels of accuracy.

1.
Rokhlin
V.
,
1985
, “
Rapid solution of integral equations of classical potential theory
,”
J. Comput. Phys.
,
60
, pp.
187, 207
187, 207
.
2.
Greengard
L.
,
Rokhlin
V.
,
1987
, “
A fast algorithm for particle simulations
,”
J. Computat. Phys.
,
73
, pp.
325
348
.
3.
Barnes
J.
,
Hut
P.
,
1986
, “
A hierarchical O(n log n) force calculation algorithm
,”
Nature
,
324
, pp.
446
449
.
4.
Brandt
A.
,
Lubrecht
A. A.
,
1990
, “
Multilevel matrix multiplication and fast solution of integral equations
,”
J. Computt. Phys.
90
, pp.
348
370
.
5.
Beylkin
G.
,
Coifman
R.
,
Rokhlin
V.
,
1991
. “
Fast wavelet transform and numerical algorithms
,”
Comput. Phys. Appl. Math.
,
44
, pp.
141
183
.
6.
Rokhlin
V.
,
1990
, “
Rapid solution of integral equations of scattering theory in two dimensions
,”
J. Comput. Phys.
,
86
, pp.
414
439
.
7.
Engheta
N.
,
Murphy
W. D.
,
Rokhlin
V.
,
Vassihou
M. S.
,
1992
, “
The fast multipole method (FMM) for electromagnetic scattering problems
,”
IEEE Trans. Antennas Propagat.
,
40
, pp.
634
641
.
8.
Coifman
R.
,
Rokhlin
V.
,
Wandzura
S.
,
1993
, “
The fast multipole method for the wave equation: a pedestrian prescription
,”
IEEE Antennas Propagat. Mag.
,
35
, pp.
7
12
.
9.
Lu
C. C.
,
Chew
W. C.
,
1994
, “
A multi-level algorithm for solving a boundary integral equation of wave scattering
,”
Microwave Opt. Technol. Lett.
,
7
, pp.
466
470
.
10.
Epton
M. A.
,
Dembart
B.
,
1995
, “
Multipole translation theory for the three-dimensional Laplace and Helmholtz equations
,”
SIAM J. Sci. Comput.
,
16
, pp.
865
897
.
11.
Greengard
L.
,
Huang
J.
,
Rokhlin
V.
,
Wandzura
S.
,
1998
, “
Accelerating fast multipole methods for low-frequency scattering
,”
Comput. Sci. Engng
,
5
, pp.
32
38
.
12.
Zhao
J.-S.
,
Chew
W. C.
,
2000
, “
Applying matrix rotation to the three-dimensional low-frequency multilevel fast multipole algorithm
,”
Microw. Opt. Technol. Lett.
,
26
, pp.
105
110
.
13.
Chew
W. C.
,
2004
, “
Computational electromagnetics: the physics of smooth versus oscillatory fields
,”
Phil. Trans. R. Soc. Lond. A
,
362
, pp.
579
602
.
14.
Darve
E
,
Have
P.
,
2004
, “
Effieient fast multipole method for low-frequency scattering
,”
J. Comput. Phys.
,
197
, pp.
341
363
.
15.
Darve
E
,
Have
P.
,
2004
, “
A fast multipole method for Maxwell equations stable at all frequencies
,”
Phil. Trans. R. Soc. Lond. A
,
362
, pp.
603
628
.
16.
Grigoriev
M. M.
,
Dargush
G. K.
,
2004
, “
A multi-level boundary element method for two-dimensional steady heat diffusion
,”
Numer. Heat Transfer. Part B: Fund.
,
46
, pp.
329
356
.
17.
Grigoriev
M. M.
,
Dargush
G. F.
,
2005
, “
A multi-level boundary element method for Stokes flows in irregular two-dimensional domains
,”
Comput. Methods Appl. Mech. Engrg.
,
194
, pp.
3553
3581
.
18.
Grigoriev
M. M.
,
Dargush
G. F.
,
2004
, “
A fast multilevel boundary element method for the Helmholtz equation
,”
Comput. Methods Appl. Mech. Engrg.
,
193
, pp.
165
203
.
19.
Brandt
A.
,
1991
, “
Multilevel computations of integral transforms and particle interactions with oscillatory kernels
,”
Comput. Phys. Comm.
,
65
, pp.
24
38
.
20.
Banerjee, P.K., Butterfield, R., 1981, Boundary Element Methods in Engineering Science, McGraw-Hill, London.
21.
Brebbia, C.A., Telles, J., Wrobel, L., 1984, Boundary Element Techniques Theory and Applications, Springer-Verlag, Berlin.
22.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1992, Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press: Cambridge.
23.
MacLeod
A. J.
,
1996
, “
Algorithm 757: MISCFUN, A software package to compute uncommon special functions
,”
ACM Trans. Math. Software
,
22
, pp.
288
301
.
This content is only available via PDF.
You do not currently have access to this content.