A comparison of experimental data and CFD simulation results of wall pressure fluctuations on simplified geometries that generate flow structures similar to an automobile are presented. The numerical results have been obtained using the commercial software PowerFLOW 3.4p4a. The simulation kernel of this software is based on the numerical scheme known as the Lattice Boltzmann Method (LBM), combined with an RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of high Reynolds number flows over complex geometries, together with the acoustics. The geometries considered for this study represent the green house and the side mirror of a car. Spectral analysis is performed on the simulation data and the results are compared to the experimental data. This comparison provides good correlation between the simulation and experiment, and demonstrates the capability of this numerical scheme in predicting turbulent fluctuations due to complex flow phenomena.

1.
Bhatnagar
P.
,
Gross
E.
and
Krook
M.
, “
A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component system
,”
Pys. Rev.
, vol.
94
, pp.
511
525
,
1954
.
2.
Chapman, S. and Cowling, T., “The Mathematical Theory of Non-Uniform Gases,” Cambridge University Press, 1990.
3.
Chen
H.
, “
Volumetric Formulation of the Lattice Boltzmann Method for Fluid Dynamics: Basic Concept
,”
Phys. Rev. E
, Vol.
58
,
1998
, pp.
3955
3963
4.
Chen
H.
,
Kandasamy
S.
,
Orszag
S.
,
Shock
R.
,
Succi
S.
and
Yakhol
V.
, “
Extended Boltzmann Kinetic Equation for Turbulent Flows
,”
Science
, Vol.
301
, pp.
633
636
,
2003
5.
Chen
H.
,
Orszag
S.
,
Staroselsky
I.
and
Succi
S.
, “
Expanded Analogy between Boltzmann Kinetic Theory of Fluid and Turbulence
,”
J. Fluid Mech.
, Vol.
519
,
2004
, pp.
307
314
.
6.
Chen
H.
,
Teixeira
C.
and
Molvig
K.
, “
Digital Physics Approach to Computational Fluid Dynamics, Some Basic Theoretical Features
,”
Int. J. Mod. Phys. C.
,
8
(
4
),
1997
, p.
675
675
.
7.
Chen
H.
,
Teixeira
C.
,
Molvig
K.
, “
Realization of Fluid Boundary Conditions via Discrete Boltzmann Dynamics
,”
Int. J. Mod. Phys. C
,
9
(
8
),
1998
, p.
1281
1281
.
8.
Chen, H., “Extensions in Turbulent Wall Modeling” Exa internal publication, 1998.
9.
Chen
S.
and
Doolen
G.
, “
Lattice Boltzmann Method for Fluid Flows
,”
Ann Rev. Fluid Mech.
, vol.
30
, pp.
329
364
,
1998
.
10.
Chen
S.
,
Chen
H.
,
Martinez
D.
and
Matthacus
W.
, “
Lattice Boltzmann model for simulation of magnetohydrodynamics
,”
Phys. Rev. Lett.
,
67
(
27
),
1991
, pp.
3776
3779
.
11.
Crouse, B., Senthooran, S., Balasubramanian, G., Freed, D., Noelting, S., Mongeau, L. and Hong, J. S., “Sunroof Buffeting of a Simplified Car Model: Simulations of the Acoustic and Flow-induced Responses,” SAE Paper No. 2005-01-2498, 2005
12.
Frisch
U.
,
Hasslacher
H.
and
Pomeau
Y.
, “
Lattice-gas Automata for the Navier-Stokes Equations
,”
Phys. Rev. Lett.
, Vol.
56
,
1986
, pp.
1505
1508
.
13.
Li
Y.
,
Shock
R.
,
Zhang
R.
, and
Chen
H.
, “
Numerical Study of Flow Past an Impulsively Started Cylinder by Lattice Boltzmann Method
J. Fluid Mech.
, Vol.
519
,
2004
, pp.
273
300
.
14.
Pervaiz, M. and Teixeira, C., “Two Equation Turbulence Modeling with the Lattice-Boltzmann Method,” Proc. of ASME PVP Division Conference, Boston, 1999.
15.
Qian
Y.
,
d’Humieres
D.
and
Lallemand
P.
, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
,
17
,
1992
, pp.
479
484
.
16.
Rubinstein
R.
and
Barton
J. M.
, “
Nonlinear Reynolds Stress Models and the Renormalization Group
Phys. Fluids A
, Vol.
2
, No.
8
,
1990
. pp.
1472
1476
.
17.
Shock
R.
,
Mallick
S.
,
Chen
H.
,
Yakhot
V.
, and
Zhang
R.
, “
Recent simulation results on 2D NACA airfoils using a lattice Boltzmann based algorithm
,”
AIAA J. of Aircraft
, Vol.
39
, No.
3
(
2002
), pp.
434
439
.
18.
Teixeira
C.
, “
Incorporating Turbulence Models into the Lattice-Boltzmann Method
,”
Int. J. Mod. Phys. C
, Vol.
9
No.
8
,
1998
, pp.
1159
1175
.
19.
Vaillant, O. and Maillard, V., “Numerical Simulation of Wall Pressure Fluctation on a simplified Vehicle Shape,” AIAA Paper 2003-3271, 2003.
20.
Yakhot, V., Chen, H. A., Staroselsky, I., Qian, Y., Shock, R., Kandasamy, S., Zhang, R., Mallick, S., and Alexander, C., “A New Approach to Modelling Strongly Non-Equilibrium, Time-Dependent Turbulent Flow” Exa internal publication, 2001.
21.
Yakhot
V.
and
Orszag
S., A.
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
J. Sci. Comput.
, Vol.
1
, No.
2
,
1986
, pp.
3
51
.
22.
Yakhot
V.
,
Orszag
S.
,
Thangam
S.
,
Gatski
T.
and
Speziale
C.
, “
Development of turbulence models for shear flows by a double expansion technique
,”
Phys. Fluids A
,
4
(
7
),
1992
, pp.
1510
1520
.
23.
Noelting, S., “Application of Lattice-based Simulation in Automobile Engineering: External Flows, Aeroacoustics and Internal Flows,” Exa Internal Publication.
This content is only available via PDF.
You do not currently have access to this content.