The excellent mechanical properties of thin film shape memory alloys like Nickel-Titanium (NiTi) have led to their widespread use in MEMS-based micropumps, microactuators, microgrippers, etc. Shape memory based micropumps and actuators have superior work densities compared to other technologies. Characterization of thermophysical properties of these materials is important for modeling the behavior of NiTi-based microdevices. For example, the frequency response of shape-memory based microactuators depends on the rate of dissipation of thermal energy, which is a strong function of the thermal properties of the thin film. While bulk thermal properties of NiTi have been reported before, there exists very little work on measuring these properties for the thin film form. This paper uses the 3-ω method for measurement of thermal conductivity of NiTi thin films. NiTi is sputtered on a Silicon substrate, followed by patterning of a metal heater line. Front-to-backside alignment and Deep Reactive Ion Etching (DRIE) of the substrate results in a free standing thin film of NiTi. A sinusoidal electric current is passed through the metal heater, and the third harmonic of the voltage is measured using a lock-in amplifier. This is used to determine the temperature oscillation in the metal heater, which provides the thin film thermal conductivity using a recently developed analytical model for 3-ω measurements in a two-dimensional free standing thin film. The measured values are found to be much lower than the known bulk thermal conductivity of NiTi. This highlights the importance of thin film property measurements instead of using bulk properties. Data obtained in this work is likely to be useful for improved modeling of thin film shape memory based microdevices.

1.
Fu
Y.
,
Du
H.
,
Huang
W.
,
Zhang
S.
,
Hu
M.
, “
TiNi-based thin films in MEMS applications: a review
,”
Sens. Actuators A
,
A112
(
2–3
), pp.
395
408
,
2004
2.
Kahn
H.
,
Huff
M. A.
,
Heuer
A. H.
, “
The TiNi shape-memory alloy and its applications for MEMS
,”
J. Micromech. Microeng.
8
, pp.
213
221
,
1998
.
3.
Benard
W. L.
,
Kahn
H.
,
Heuer
A. H.
,
Huff
M. A.
, “
Thin-film shape memory alloy actuated micropumps
,”
J. MEMS
,
7
,
245
251
,
1998
.
4.
Krulevitch
P.
,
Lee
A. P.
,
Ramsey
P. B.
,
Trevino
J. C.
,
Hamilton
J.
,
Northrup
M. A.
, “
Thin film shape-memory alloy micro-actuators
,”
J. MEMS
,
5
, pp.
270
282
.
1996
.
5.
Reynaerts
D.
,
Peirs
J.
,
Vein Brussel
H.
, “
An implantable drug-delivery system based on shape-memory alloy micro-actuation
,”
Sens. Actuators A
,
A61
, pp.
455
462
,
1997
.
6.
Xu
W.
,
Frank
T. G.
,
Stockham
G.
,
Cuschieri
A.
, “
Shape memory alloy fixator system for suturing tissue in minimal access surgery
.”
Ann. Biomed. Eng.
,
27
, pp.
663
669
,
1999
.
7.
Wolf
R. H.
,
Heuer
A. H.
, “
TiNi (shape memory) films on silicon for MEMS applications
,”
J. MEMS.
4
, pp.
206
212
,
1995
.
8.
Surbled
P.
,
Clerc
C.
,
Pioufle
B. L.
,
Afaka
M.
,
Fujita
H.
, “
Effect of the composition and thermal annealing on the transformation temperatures of sputtered TiNi shape-memory alloy thin films
,”
Thin Solid Films
,
401
,
52
59
.,
2001
.
9.
Shih
C. L.
,
Lai
B. K.
,
Kahn
H.
,
Philips
S. M.
,
Heuer
A. H.
, “
A robust co-sputtering fabrication procedure for TiNi shape-memory alloys for MEMS
,”
J. MEMS
,
10
, pp.
69
79
,
2001
.
10.
Terada
Y.
,
Ohkubo
K.
,
Nakagawa
K.
,
Mohri
T.
,
Suzuki
T.
, “
Thermal conductivity of B2-type aluminides and titanides
,”
Intermetallics
,
3
, pp.
347
355
,
1995
.
11.
Goff
J. F.
, “
Thermal Conductivity, thermoelectric power, and the electrical resistivity of stoichiometric TiNi in the 3 to 300K temperature range
,”
J. Appl. Phys.
,
35
, pp.
2919
2927
,
1964
.
12.
Cahill
D. G.
, “
Thermal conductivity measurement from 30K to 750 K - The 3-omega method
,”
Rev. Sci. Instrum.
,
61
, pp.
802
808
,
1990
.
13.
Lee
S.-M.
,
Cahill
D. G.
,
Allen
T. H.
, “
Thermal conductivity of sputtered oxide films
,”
Phys. Rev. B
,
52
, pp.
253
257
,
1995
.
14.
Yang
B.
,
Liu
W. L.
,
Liu
J. L.
,
Wang
K. L.
,
Chen
G.
, “
Measurements of anisotropic thermoelectric properties in superlattices
,”
Appl. Phys. Lett.
,
81
(
19
), pp.
3588
3590
,
2002
.
15.
Liu
W.
,
Balandin
A. A.
, “
Thermal conduction in AlxGa1−xN alloys and thin films
,”
J. Appl. Phys.
,
97
, pp.
073710
073710
,
2005
.
16.
Cahill
D. G.
,
Katiyar
M.
,
Abelson
J. R.
, “
Thermal conductivity of a-Si:H thin films
.”
Phys. Rev. B
,
50
, pp.
6077
6081
,
1994
.
17.
Jain, A., Hu, X., Goodson, K. E., “Thermal transport property measurement of a two-dimensional thin film using the 3-ω method,” 7th ASME-ISHMT Heat & Mass Transfer Conference, Guwahati, India, 2006.
18.
Faulkner
M. G.
,
Amalraj
J. J.
,
Bhattacharyya
A.
, “
Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires
,”
Smart. Mater. Struct.
,
9
, pp.
643
639
,
2000
.
This content is only available via PDF.
You do not currently have access to this content.