This paper describes a thermoelectric infrared (IR) microsensor which is designed and fabricated using commercial CMOS IC processes with subsequent bulk-micromachining technology. The key feature of this sensor is that the thermocouples have been placed under the IR absorbing membrane. This infrared microsensor has the advantages of high fill factor, low noise equivalent temperature difference (NETD), and broad bandwidth. Finite element analysis has been conducted to simulate the heat transfer behavior of the device and to demonstrate the feasibility of our design. Besides, the experimental setup has been built for measuring the infrared sensor response. The results show a measured responsivity of 63 V/W and a thermal time constant of 10 ms.

1.
Choi, I. H., Wise, A., 1986, “A silicon-thermopile-based infrared sensing array for use in automated manufacturing,” IEEE Trans. On Electron Devices, pp. 72–79.
2.
Lang
W.
, and
Ku¨hl
K.
,
1990
, “
A thin film bolometer for radiation thermometry at ambient temperature
,”
Sens. Actuators, Phys. A
,
21–23
, pp.
473
477
.
3.
Wood, R. A., and Foss, N. A., 1993, “Micromachined bolometer arrays achieve low-cost imaging,” Laser Focus World, pp. 101–106.
4.
Radford, W., Murphy, D., Ray, M., Propst, S., Kennedy, A., Kojiro, J., Woolaway, J., Soch, K., Coda, R., Lung, G., Moody, E., Gleichman, D., and Baur, S., 1996, “320x240 silicon microbolometer uncoolcd IRFPA’s with on-chip offset correction,” Proc. SPIE Infrared Detectors and Focal Plane Arrays IV, Vol. 2746, pp. 82–92.
5.
Jahanzeb
A.
,
Travers
C. M.
,
C¸elik-Butler
Z.
,
Butler
D. P.
, and
Tan
S.
,
1997
, “
A semiconductor YBaCuO microbolometer for room temperature IRimaging
,”
IEEE Trans. Electron Devices
,
44
, pp.
1795
1801
.
6.
Kruse, P., Dodson, R., Anderson, S., Kantor, L., Knipfer M., McManus, T., Wood, A., and Rezachek, T., 1998, “Infrared imager employing 160x120 pixel uncooled bolometer array,” Proc. SPIE Infrared Technology and Applications XXIV, Vol. 2, pp. 572–577.
7.
Gray, J. E., C¸elik-Butler, Z., Butler, D. P., and Jahanzeb, A., 1998, “Uncooled infrared microbolometers and pyroelectric detectors using semiconducting YBaCuO,” Proc. SPIE Infrared Technology and its Applications XXIV, Vol. 3436, pp. 555–563.
8.
Radford, W., Wyles, R., Wyles, J., Varesi, J., Ray, M., Murphy, D., Kennedy, A., Finch, A., Moody, E., Cheung, F., Coda, R., and Baur, S., 1998, “Microbolometer uncooled infrared camera with 20 mK NETD,” Proc. SPIE Infrared Technology and Applications XXIV, Vol. 3436, pp. 636–646.
9.
Oliver
A. D.
, and
Wise
K. D.
,
1999
, “
A 1024-element bulk-micromachined thermopile infrared imaging array
,”
Sensors and Actuators A
,
73
, pp.
222
231
.
10.
Almasri
M.
,
Butler
D. P.
, and
C¸elik-Butler
Z.
,
2001
, “
Self-supporting infrared microbolometers with low-thermal mass
,”
J. Microelectromech. Syst.
,
10
, pp.
469
476
.
11.
Schaufelbuehl, A., Munch, U., Menolfi, C., Brand, O., Paul, O., Huang, Q., and Baltes, H., 2001, “256-pixel CMOS-integrated thermoelectric infrared sensor array,” Proc. MEMS (2001), pp. 200–203.
12.
Tezcan
D. S.
,
Eminoglu
S.
, and
Akin
T.
,
2003
, “
A low-cost uncooled infrared microbolometer detector in standard CMOS technology
,”
IEEE Electron Devices
,
50
, pp.
494
502
.
This content is only available via PDF.
You do not currently have access to this content.