Arrays of individual carbon nanotube (CNT) emitters for nanoelectromechanical systems (NEMS) are constructed and characterized. Vertically aligned single multi-walled carbon nanotubes (MWNTs) are realized using a combination of e-beam lithography and plasma-enhanced chemical vapour deposition (PECVD) growth. Field emission properties of the arrays are investigated inside a scanning electron microscope (SEM) using scanning anode field emission microscopy (SAFEM) realized from a scanning anode actuated by a 3-DOF nanorobotic manipulator with sub-nanometer resolution. With the SA-FEM and the arrays of single MWNTs, a linear nano encoder is proposed. Vertical position is detected by the change in emission current, whereas the horizontal position of the scanning anode is sensed from the emission distribution. A resolution of 98.3 nm in the vertical direction and 38.0 nm (best: 12.9 nm) in the lateral direction has been achieved. Failure mechanisms of the emitters are systematically investigated in theory and experiment. Failure modes include opening, shortening, breaking, eradicating, and telescoping, which can be identified/monitored with I-V curves and Fowler-Nordheim plots of field emission. Controlled “failures” can find applications in length modification of individual tubes in an array. As an example, selective eradication for fabricating a patterned emitter array is demonstrated. Such techniques will in turn enable applications in NEMS such as field emission based sensor and actuator arrays, nanoelectronics such as wiring or in situ construction of functional elements.

1.
Nelson, B.J., Dong, L.X., Subramanian, A., and Bell, D.J., 2005, “Hybrid nanorobotic approaches to NEMS,” The 12th Int. Symp. on Robotics Research (ISRR), San Francisco, October 2005.
2.
Dong
L. X.
,
Arai
F.
, and
Fukuda
T.
,
2002
, “
Electron-beam-induced deposition with carbon nanotube emitters
,”
Appl. Phys. Lett.
,
81
, pp.
1919
1921
.
3.
Dong, L.X., Nelson, B.J., Fukuda, T., and Arai, F., 2005, “Towards linear nano servomotors with integrated position sensing,” Proc. of the 2005 IEEE Int. Conf. on Robotics & Automation (ICRA2005), pp. 867–872, Barcelona.
4.
Ren
Z. F.
,
Huang
Z. P.
,
Xu
J. W.
,
Wang
J. H.
,
Bush
P.
,
Siegal
M. P.
, and
Provencio
P. N.
,
1998
, “
Synthesis of large arrays of well-aligned carbon nanotubes on glass
,”
Science
,
282
, pp.
1105
1107
.
5.
Semet
V.
,
Binh
V. T.
,
Vincent
P.
,
Guillot
D.
,
Teo
K. B. K.
,
Chhowalla
M.
,
Amaratunga
G. A. J.
,
Milne
W. I.
,
Legagneux
P.
, and
Pribat
D.
,
2002
, “
Field electron emission from individual carbon nanotubes of a vertically aligned array
,”
Appl. Phys. Lett.
,
81
, pp.
343
345
.
6.
Binh
V. T.
,
Semet
V.
,
Guillot
D.
,
Legagneux
P.
, and
Pribat
D.
,
1998
, “
Microguns with 100-V electron beams
,”
Appl. Phys. Lett.
73
, pp.
2048
2051
.
7.
Milne
W. I.
,
Teo
K. B. K.
,
Chhowalla
M.
,
Amaratunga
G. A. J.
,
Yuan
J.
,
Robertson
J.
,
Legagneux
P.
,
Pirio
G.
,
Bouzehouane
K.
,
Pribat
D.
,
Bruenger
W.
, and
Trautmann
C.
,
2001
, “
Investigating carbon materials for use as the electron emission source in a parallel electron-beam lithography system
,”
Current Appl. Phys.
,
1
, pp.
317
320
.
8.
Balzani, V., Venturi, M., and Credi, A., 2003, Molecular Devices and Machines: A Journey into the Nanoworld, 1st ed., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 269–277.
9.
Drexler, K.E., 1992, “Nanosystems: molecular machinery, manufacturing, & computation,” John Wiley & Sons, Inc., 1st ed.
10.
Fennimore
A. M.
, et al.,
2003
, “
Rotational actuators based on carbon nano-tubes
,”
Nature
,
424
, pp.
408
410
.
11.
Binnig
G.
,
Rohrer
H.
,
Gerber
C.
, and
Weibel
E.
,
1982
, “
Surface studies by scanning tunneling microscopy
,”
Phys. Rev. Lett.
,
49
, pp.
57
61
.
12.
Binnig
G.
,
Quate
C. F.
, and
Gerber
C.
,
1986
, “
Atomic force microscope
,”
Phys. Rev. Lett.
,
56
, pp.
93
96
.
13.
Liu, P., Dong, L.X., Fukuda, T., Arai, F., Nagai, M., and Imaizumi, Y., 2004, “Carbon nanotubes based position sensors,” Proc. of the 2004 Int. Conf. on Intelligent Mechatronics and Automation, pp. 12–17 (in Chengdu, China).
14.
Hansson A. and Stafstro, S., 2003, “Intershell conductance in multiwall carbon nanotubes,” Phys. Rev. B, 67, art. no. 075406.
15.
Zhu
W.
,
Bower
C.
,
Zhou
O.
,
Kochanski
G.
, and
Jin
S.
,
1999
, “
Large current density from carbon nanotube field emitters
,”
Appl. Phys. Lett.
,
75
, pp.
873
875
.
16.
Zhong
D. Y.
,
Zhang
G. Y.
,
Liu
S.
,
Sakurai
T.
, and
Wang
E. G.
,
1999
, “
Universal field-emission model for carbon nanotubes on a metal tip
,”
Appl. Phys. Lett.
,
80
, pp.
506
508
.
17.
Arai, F., Liu, P., Dong, L.X., and Fukuda, T., 2004, “Field emission property of individual carbon nanotubes and its applications,” Proc. of the 2004 IEEE Int. Conf. on Robotics & Automation (ICRA2004), pp. 440–445 (in New Orleans).
18.
Dong, L.X., Arai, F., Fukuda, T., and Nelson, B.J., 2004, “Field emission of telescoping multi-walled carbon nanotubes,” Proc. of the 4th IEEE Int. Conf. on Nanotechnology (IEEE-NANO2004) (in Munich).
19.
Camahan, D., Reed, M., Ren, Z., and Kempa, K., “Field emission from arrays of carbon nanotubes,” www.nano-lab.com.
20.
Dean
K. A.
,
Burgin
T. P.
, and
Chalamala
B. R.
,
2001
, “
Evaporation of carbon nanotubes during election field emission
,”
Appl. Phys. Lett.
,
79
, pp.
1873
1875
.
21.
Meunier
V.
,
Senet
P.
, and
Lambin
P.
,
1999
, “
Scanning tunneling spectroscopy signature of finite-size and connected nanotubes: A tight-binding study
,”
Phys. Rev. B
,
60
, pp.
7792
7792
.
22.
Bonard, J.-M. Klinke, C., Dean, K.A., and Coll, B.F., 2003, “Degradation and failure of carbon nanotube field emitters,” Phys. Rev. B, 67, art. no. 115406.
23.
Nilsson
L.
,
Groening
O.
,
Emmenegger
C.
,
Kuettel
O.
,
Schaller
E.
,
Schlapbach
L.
,
Kind
H.
,
Bonard
J.-M.
, and
Kern
K.
,
2000
, “
Scanning field emission from patterned carbon nanotube films
,”
Appl. Phys. Lett.
,
76
, pp.
2071
2073
.
24.
Fowler
R. H.
and
Nordheim
I. W.
,
1928
, “
Field emission in intense electric fields
,”
Proc. R. Soc. London Ser. A
,
119
, pp.
173
181
.
25.
De Heer
W. A.
,
Chatelain
A.
, and
Ugarte
D.
,
1995
, “
A carbon nanotube field-emission electron
,”
Science
,
270
, pp.
1179
1180
.
This content is only available via PDF.
You do not currently have access to this content.