This paper presents a novel batch fabrication process for manufacturing bifunctional Scanning Electrochemical-Atomic Force Microscopy (AFM-SECM) probes with a recessed integrated ring electrode. The presented tip fabrication procedure enables the integration of a micro ring electrode at a precisely defined distance above the apex of the AFM tip. The electroactive area integrated into a scanning probe tip allows obtaining electrochemical data independently and separated from the topographical image. The tip fabrication is based upon batch processing, which provides bifunctional scanning probe tips on a wafer scale at low cost with high processing reproducibility and uniformity. Electrochemical characterization of an AFM tip-integrated ring electrode and combined electrochemical and topographical imaging using the bifunctional probe are demonstrated in this study.

1.
Macpherson
J. V.
and
Unwin
P. R.
,
2000
, “
Combined scanning electrochemical-atomic force microscopy
,”
Analytical Chemistry
,
72
, pp.
276
285
.
2.
Macpherson
J. V.
and
Unwin
P. R.
,
2001
, “
Noncontact electrochemical imaging with combined scanning electrochemical atomic force microscopy
,”
Analytical Chemistry
,
73
, pp.
550
557
.
3.
Slevin
C. J.
,
Gray
N. J.
,
Macpherson
J. V.
,
Webb
M. A.
, and
Unwin
P. R.
,
1999
, “
Fabrication and characterization of nanometer-sized platinum electrodes for voltammetric analysis and imaging
,”
Electrochemistry Communication
,
1
, pp.
282
288
.
4.
Fasching, R. J., Tao, Y., Hammerick, K., and Prinz, F. B., “A pencil probe system for lelectochemical analysis and modification in nanometer dimensions,” Proceedings of SPIE, 5116, pp. 128–135.
5.
Tao
Y.
,
Fasching
R. J.
, and
Prinz
F. B.
,
2004
Ultrasharp high aspect-ratio probe array for SECM and AFM analysis
,”
Proceedings of SPIE
,
5389
, pp.
431
442
6.
Dobson
P. S.
,
Weaber
J. M. R.
,
Holder
M. N.
,
Unwin
P. R.
, and
Macpherson
J. V.
,
2005
, “
Characterization of batch-microfabricated scanning electrochemical-atomic force microscopy probes
.”
Analytical Chemistry
,
77
, pp.
424
434
.
7.
Kranz
C.
,
Friendbacher
G.
,
Mizaikoff
B.
,
Lugstein
A.
,
Bertagnolli
E.
2001
, “
Integrating an ultramicroelectrode in an AFM cantilever: combined technology for enhanced information
,”
Analytical Chemistry
,
73
, pp.
2491
2500
.
8.
Lugstein
A.
,
Bertagnolli
E.
,
Kranz
C.
, and
Mizaikoff
B.
,
2002
, “
Fabrication of a ring nanoelectrode in an AFM tip: novel approach towards simultaneous electrochemical and topographical imaging
,”
Surface and Interface Analysis
,
33
, pp.
146
150
.
9.
Lugstein
A.
,
Bertagnolli
E.
,
Kranz
C.
, and
Mizaikoff
B.
,
2002
Integrating micro- and nanoelectrodes into atomic force microscopy cantilevers using focuse ion beam techniques
,”
Applied Physics Letters
,
81
, pp.
349
351
.
10.
Kueng
A.
,
Kranz
C.
,
Mizaikoff
B.
,
Lugstein
A.
, and
Bertagnolli
E.
,
2003
, “
Combined scanning electrochemical atomic force microscopy for tapping mode imaging
,”
Applied Physics Letters
,
82
, pp.
1592
1594
.
11.
Kranz
C.
,
Kueng
A.
,
Lugstein
A.
,
Bertabnolli
E.
, and
Mizaikoff
B.
,
2004
, “
Mapping of enzyme activity by detection for enzymatic products during AFM imaging with integrated APM-SECM probes
,”
Ultramicroscopy
,
100
, pp.
127
134
.
12.
Lee
Y.
,
Ameymia
S.
,
Bard
A. J
,
2001
, “
Scanning Electrochemical Microscopy. 41. Theory and Characterization of Ring (Electrodes)
,”
Analytical Chemistry
.
73
, pp.
2261
2267
13.
Smythe
W. R.
,
1951
The capacitance of a circular annulus
.”
Journal of Applied Physics
,
22
, pp.
1499
1501
.
14.
Szabo
A.
,
1987
, “
Theory of the current at microelectrodes: application to ring electrodes
,”
Journal of Physical Chemistry
,
91
, pp.
3108
3111
.
15.
Shin, H. and Heketh, P.J., 2005, “Batch Fabricated Bifunctional AFM Cantilevers for the Application of AFM-SECM,” 208th ECS Meeting, Los Angeles, in preparation.
This content is only available via PDF.
You do not currently have access to this content.