In this paper, we present a MEMS test bed for electromechanical testing of nanowires and nanotubes. The MEMS device exploits the mechanics of post buckling deformation of slender columns to achieve very high force and displacement resolution. The proposed technique involves manipulating the nanowire or nanotube to the device site and hence is applicable to any type of one-dimensional solid. Initial experiments on semiconducting ZnO nanowires estimated the elastic modulus to be 1 GPa.
Volume Subject Area:
Microelectromechanical Systems
1.
Goldberger
J.
He
R.
Zhang
Y.
Lee
S.
Yan
H.
Choi
H. J.
Yang
P.
Single-crystal gallium nitride nanotubes
.” Nature
, vol. 422
. pp. 599
–602
, 2003
.2.
Xia
Y.
Yang
P.
Sun
Y.
Wu
Y.
Mayers
B.
Gates
B.
Yin
Y.
Kim
F.
Yan
H.
One-dimensional nanostructures: Synthesis, characterization, and applications
.” Advanced Materials
, vol. 15
, pp. 353
–389
, 2003
.3.
Lee
S.-K.
Choi
H.-J.
Pauzauskie
P.
Yang
P.
Cho
N.-K.
Park
H.-D.
Suh
E.-K.
Lim
K.-Y.
Lee
H.-J.
Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach
,” Physica Status Solidi C: Conferences
, vol. 1
, pp. 2775
–2778
, 2004
.4.
Wang
Z. L.
Gao
R. P.
Poncharal
P.
de Heer
W. A.
Dai
Z. R.
Pan
Z. W.
Mechanical and electrostatic properties of carbon nanotubes and nanowires
,” Materials Science and Engineering C
, vol. 16
, pp. 3
–10
, 2001
.5.
Tao
N. J.
He
H. X.
Shu
C.
Li
C. Z.
Adsorbate effect on the mechanical stability of atomically thin metallic wires
,” Journal of Electroanalytical Chemistry
, vol. 522
, pp. 26
–32
, 2002
.6.
Yanson
A. I.
Rubio Bollinger
G.
van den Brorn
H. E.
Agrait
N.
van Ruitenbeek
J. M.
Formation and manipulation of a metallic wire of single gold atoms
,” Nature
, vol. 395
. pp. 783
–785
, 1998
.7.
Rodrigues
V.
Bettini
J
Silva
P. C.
Ugarte
D.
Evidence for Spontaneous Spin-Polarized Transport in Magnetic Nanowires
,” Physical Review Letters
, vol. 91
, pp. 96801
–1
, 2003
.8.
Wong
E. W.
Sheehan
P. E.
Lieber
C. M.
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,” Science
, vol. 277
, pp. 1971
–1975
, 1997
.9.
Erts
D.
Lohmus
A.
Lohmus
R.
Olin
H.
Pokropivny
A. V.
Ryen
L.
Svensson
K.
Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope
,” Applied Surface Science
, vol. 188
, pp. 460
–466
, 2002
.10.
Wang
Z. L.
Gao
R. P.
Pan
Z. W.
Dai
Z. R.
Nano-scale mechanics of nanotubes, nanowires, and nanobelts
,” Advanced Engineering Materials
, vol. 3
, pp. 657
–661
, 2001
.11.
Mao
S. X.
Zhao
M.
Wang
Z. L.
Nanoscale mechanical behavior of individual semiconducting nanobelts
,” Applied Physics Letters
, vol. 83
, pp. 993
–995
, 2003
.12.
Kim
P.
Lieber
CM.
Nanotube nanotweezers
,” Science
, vol. 286
, pp. 2148
–2150
, 1999
.13.
S. Lu, J. Chung, D. Dikin, J. Lee, and R. S. Ruoff, “An integrated MEMS system for in-situ mechanical testing of nanostructures,” presented at 3rd ASME Integrated Nanosystems Conference - Design, Synthesis, and Applications, Sep 22–24 2004, Pasadena, CA, United States, 2004.
14.
Zhu
Y.
Moldovan
N.
Espinosa
H. D.
A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures
,” Applied Physics Letters
, vol. 86
, pp. 013506
–1
, 2005
.15.
A. V. Desai and M. A. Haque, “Design and fabrication of a novel MEMS device for high resolution force and displacement measurement,” presented at 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE, Nov 13–19 2004, Anaheim, CA, United States, 2004.
This content is only available via PDF.
Copyright © 2005
by ASME
You do not currently have access to this content.