Mechanical, and electrical effects generated by the galvanic corrosion of polysilicon immersed in various hydrofluoric acid (HF)-based solutions are described. Micromachined test structures consisting of phosphorus-doped polysilicon in contact with a gold metallization layer are utilized. A suite of otherwise identical test (metal added) and reference (no metal) structures were used to investigate changes in key performance parameters. Corroded test structures demonstrate an increase in through-thickness strain gradient, a decrease in the characteristic frequency of mechanical resonance, no change in in-plane strain, greatly increased electrical resistance, a decrease in hardness, and a decrease in elastic modulus. Noteworthy results were observed for aqueous-hydrochloric acid, ethanol, water, ammonium fluoride (found in buffered oxide etchant), Triton-X-100, as well as vapor-HF based chemistries. This first systematic study validates preliminary experiments and demonstrates the impact of corrosion on miniaturized structures, indicating a potential influence upon the material properties, design, performance, fatigue, tribology (friction/ wear), manufacture, and packaging of micro-and nano-scale devices.

1.
T.A. Lober and R.T. Howe, 1990, “Surface Micromaching Processes for Electrostatic Microactuator Fabrication,” Proc. IEEE MEMS, pp. 59–62.
2.
J.A. Walker, K.J. Gabriel and M. Mehregany. 1990, “Mechanical Integrity of Polysilicon Films Exposed to Hydroflourie Acid Solutions.” Proc. IEEE MEMS, pp. 56–60.
3.
Monk
 
D. J.
,
Krulevitch
 
P. A.
,
Howe
 
R. T.
and
Johnson
 
G. C.
,
1993
, “
Stress-Corrosion Cracking and Blistering of Thin Polycrystalline Silicon Films in Hydroflouric Acid
.”
Proc. Mat. Res. Soc. Symp.
,
308
, pp.
641
646
.
4.
Chasiotis
 
I.
and
Knauss
 
W. G.
,
2001
, “
The Mechanical Strength of Polysilicon Films: Part I. The Influence of Fabrication Governed Surface Conditions
.”
J. Mech Phys. Solids
,
51
. pp.
1533
1550
.
5.
H. Kahn, C. Deeb, I. Chasiotis and A.H. Heuer, 2005, “Anodic Oxidation During MEMS Processing of Silicon and Polysilicon: Native Oxides Can be Thicker Than You Think,” J MEMS, in review.
6.
Pierron
 
O. N.
,
Macdonald
 
D. D.
, and
Muhlstein
 
C. L.
,
2005
, “
Galvanic Effects in Si-Based Microelectromechanical Systems: Thick Oxide Formation and its Implications for Fatigue Reliability
,”
Appl. Phys. Lett.
,
78
(
21
), pp.
211919
211921
.
7.
Xia
 
X.
,
Ashruf
 
C.
,
French
 
P.
and
Kelly
 
J.
,
2000
, “
Galvanic Cell Formation in Silicon/Metal Contacts: The Effect on Silicon Surface Morphology
,”
Chem. Mater.
12
, pp.
1671
1678
.
8.
Bisi
 
O.
,
Ossicini
 
S.
and
Pavesi
 
L.
,
2000
, “
Porous Silicon: a Quantum Sponge Structure for Sdilicon Based Optoelectronics
,”
Surf. Sci. Rep.
,
38
, pp.
1
126
.
9.
Zhang
 
X. G.
,
Collins
 
S. D.
and
Smith
 
R. L.
,
1989
, “
Porous Silicon Formation and Electropolishing of Silicon by Anodic Polarization in HF Solution
,”
J Electrochem. Soc.
136
(
5
), pp.
1561
1565
.
10.
Guyander
 
P.
,
Joubert
 
P.
,
Guendouz
 
M.
,
Beau
 
C.
, and
Sarrett
 
M.
,
1994
, “
Effect of Grain Boundaries on the Formation of Luminescent Porous Silicon from Polycrystalline Silicon Films
.”
Appl. Phys. Let.
65
(
14
), p.
1787
1789
.
11.
Sotgiu
 
G.
,
Schirone
 
L.
, and
Rallo
 
F.
,
1997
, “
On the Use of Surfactants in the Electrochemical Preparation of Porous Silicon
,”
Thin Solid Films
,
297
, pp.
18
21
.
12.
Das
 
J.
,
Hossain
 
S. M.
,
Chakraborty
 
S.
and
Saha
 
H.
,
2001
, “
Role of Parasities in Humidity Sesning by Porus Silicon
,”
Sens Act A.
94
, pp.
44
52
.
13.
D. Koester, A. Cowen, R. Mahadevan, M. Stonefeild, B. Hardy, 2003, Poly-MUMPs Design Rules: Revision 10, MEMSCAP Inc.
14.
Tang
 
W. C.
,
Nguyen
 
T. C. H.
and
Howe
 
R.
,
1989
, “
Laterally Driven Polysilicon Resonant Microstructures
,”
Sens. Act A.
20
, pp.
25
32
.
15.
van Drieenhuizen
 
B. P.
,
Goosen
 
J. F. L.
,
French
 
P. J.
, and
Wolffenbuttel
 
R. F.
,
1993
, “
Comparison of Techniques for Measuring Both Compressive and Tensile Stress in Films
,
Sens. Act. A.
37–38
, pp.
756
765
.
16.
Joslin
 
D. L.
and
Oliver
 
W. C.
,
1990
, “
A new method for analyzing data from continuous depth-sensing microindentation tests
,”
J. Mater. Res.
,
5
, pp.
123
126
.
17.
Oliver
 
W. C.
and
Pharr
 
G. M.
,
2004
, “
Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology
,”
J. Mater. Res.
,
19
, pp.
3
20
.
18.
Shen
 
Z.
,
Thomas
 
J. J.
,
Averbuj
 
C.
,
Broo
 
K. M.
,
Englehard
 
M.
,
Crowell
 
J. E.
,
Finn
 
M. G.
, and
Siuzdak
 
G.
,
2001
, “
Porous Silicon as a Versatile Platform for Laser Desorption/Ionization Mass Spectrometry
,”
Anal. Chem.
,
73
(
3
), pp.
612
619
.
19.
Miller
 
D. C.
,
Gall
 
K.
, and
Stoldt
 
C. R.
,
2005
, “
Galvanic Corrosion of Thin Film Polysilicon: Morphological, Electrical and Mechanical Effects
,”
Electrochemical and Solid-State Letters
,
8
, pp.
G223–G226
G223–G226
.
20.
V. Domnich, D. Ge, and Y. Gogotsi, 2004, “Indentation-Induced Phase Transformations in Semiconductors,” in High-Pressure Surface Science and Engineering, IOP: Philadelphia.
21.
A.B. Hartman, F.W. DelRio, and D.C. Miller, or H.V. Panchawagh, 2005, University of Colorado. Unpublished research.
22.
Miller
 
D. C.
,
Gall
 
K.
, and
Stoldt
 
C. R.
,
2004
, “
Galvanic Cell Formation during MEMS Release Processes: Implications for Sub-micron Device Fabrication
.”
Proc. ASME Inter. Mech. Eng. Cong. & Exp.
62088
, pp.
1
10
.
23.
R. Cragun and L.L. Howell, 1999, “Linear Thermomechanical Microactuators,” Proc. ASME IMECE, pp. 181–188.
24.
Reid
 
J. R.
,
Bright
 
V. M.
and
Comtois
 
J. H.
,
1996
, “
Arrays of Thermal Micro-Actuators Coupled to Micro-Optical Components
,”
Proc. SPIE
,
2865
, pp.
74
82
.
This content is only available via PDF.
You do not currently have access to this content.