Numerical study on a rapid micromixer based on hybrid electrokinetic relay and asymmetric serpentine structures is presented. Effective mixing of liquids is essential in many applications such as drug delivery, DNA analysis/sequencing, pheromone synthesis in micro bioreactors, and biological/chemical agent detections. Rapid mixing can reduce the analysis time and permit high throughput in lab-on-a-chip or micro total analysis systems (μTAS). The proposed hybrid mixing takes advantages of both mixing enhancements induced by asymmetric flow geometries and the electrokinetic relay actuating. Simulation results show that the micro mixer is able to achieve high mixing efficiencies (94.3%) in short time (1.2s). Effects of relay frequency, electric field and channel geometry on micro-mixing have been conducted. Numerical results show that electrokinetic relay at an appropriate frequency causes effective micromixing. Moreover asymmetric flow geometries are critical for ultra effective mixing.

1.
Bessoth
F. G.
,
deMello
A. J.
and
Manz
A.
,
Microstructure for Efficient Continuous Flow Mixing
,
Anal. Commun.
,
1999
,
36
,
213
215
.
2.
Losey
M. W.
,
Jackman
R. J.
,
Firebaugh
S. L.
,
Schmidt
M. A.
and
Jensen
K. F.
,
Design and Fabrication of Microfluidic Devices for Multiphase Mixing and Reaction
,
J. Microelectromech. Syst.
,
2002
,
11
,
709
717
.
3.
Hong
C. C.
,
Choi
J. W.
and
Ahn
C. H.
,
A Novel In-Plane Passive Microfluidic Mixer with Modified Tesla Structures
,
Lab on a Chip
,
2004
,
4
,
109
113
.
4.
Mengeaud
V.
,
Josserand
J.
and
Girault
H. H.
,
Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study
,
Anal. Chem.
,
2002
,
74
,
4279
4286
.
5.
Liu
R. H.
,
Stremler
M. A.
,
Sharp
K. V.
,
Olsen
M. G.
,
Santiago
J. G.
,
Adrian
R. J.
,
Aref
H.
and
Beebe
D. J.
,
Passive Mixing in a Three-Dimensional Serpertine Microchannel
,
J. Microelectromech. Syst.
,
2000
,
9
,
190
197
.
6.
Park
S. J.
,
Kim
J. K.
,
Park
J.
,
Chung
S.
,
Chung
C.
and
Chang
J. K.
,
Rapid Three-Dimensional Passive Rotation Micromixer Using the Breakup Process
,
J. Micromech. Microeng
,
2004
,
14
,
6
14
.
7.
Stroock
A. D.
,
Dertinger
S. K. W.
,
Ajdari
A.
,
Mezic
I.
,
Stone
H. A.
and
Whitesidcs
G. M.
,
Chaotic Mixer for Microchannels
,
Science
,
2002
,
295
,
647
651
.
8.
Jacobson
S. C.
,
McKnight
T. E.
and
Ramsey
J. M.
,
Microfluidic Devices for Eletrokinetically Driven Parallel and Serial Mixing
,
Anal. Chem.
,
1999
,
71
,
4455
4459
.
9.
Arulanandam
S
and
Li
D.
,
Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping
,
Colloids and Surfaces
,
2000
,
161
,
89
102
.
10.
Ermakov
S. V.
,
Jacobson
S. C.
and
Ramsey
J. M.
,
Computer Simulations of Electrokinetic Injection Techniques in Microfluidic Devices
,
Anal. Chem.
2000
,
72
,
3512
3517
.
11.
Patankar
N. A.
and
Hu
H. H.
,
Numerical Simulation of Electroosmotic Flow
,
Anal. Chem.
1998
,
70
,
1870
1881
.
12.
Ren
L.
,
Escobedo
C.
and
Li
D.
,
Electroosmotic Flow in a Microcapillary with One Solution Displacing Another Solution
,
J. Colloid and Interface Science
,
2001
,
242
,
264
271
.
13.
Dutta
P.
,
Beskok
A.
,
Numerical Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye layer Effects
,
Anal. Chem.
2001
,
73
,
1979
1986
.
14.
Santiago
J. G.
,
Electroosmotic Flows in Microchannels with Finite Inertial and Pressure Forces
,
Anal. Chem.
2001
,
73
,
2353
2365
.
15.
Hong
S.
,
Thiffeault
J
,
Frechette
L.
and
Modi
V.
,
Numerical Study of Mixing in Microchannels with Patterned Zeta Potential Surfaces
,
Proc. IMECE
03
,
1
5
.
16.
Tang
Z.
,
Hong
S.
,
Djukic
D.
,
Modi
V.
,
West
A. C.
,
Yardley
J.
and
Osgood
R. M.
,
Electrominetic Flow Control For Composition Modulation in A Microchannel
,
J. Micromechanics Microengineering
,
2002
,
12
,
870
877
.
17.
Yang
Z.
,
Matsumoto
S.
,
Goto
H.
,
Matsumoto
M.
,
Maeda
R.
,
Ultrasonic Micromixer for Microfludic Systems
,
Sens. Actuators
,
2001
,
93
,
266
272
.
18.
Lu
L. H.
,
Ryu
K. S.
and
Liu
C.
,
A Magntic Microstirrer and Array for Microfluidic Mixing
,
J. Microelectromech. Syst.
,
2002
,
11
,
462
469
.
19.
Tsai
J. H.
and
Lin
L.
,
Active Microfluidic Mixer and Gas Bubble Filter Driven by Thermal Bubble Micropump
,
Sensors and Actuators
,
2002
,
97–98
,
665
671
.
20.
R. Rong, J. W. Choi and C. H. Ahn, A Functional Magnetic Bead/Biocell Sorter Using Fully Integrated Magnetic Micro/Nano Tips, IEEE, 2003, 530–533.
21.
H. Suzuki, and C. M. Ho, A Magnetic Force Driven Chaotic Micro-Mixer, Proc. of the 15th IEEE International Conference on MEMS, 2002, 40–43.
22.
J. Deval, P. Tabeling, and C. M. Ho, A Dielectrophoretic Chaotic Mixer, Proc. of the 15th IEEE International Conference on MEMS, 2002, 36–39.
23.
Liu
R. H.
,
Yang
J.
,
Pindera
M. Z.
,
Athavale
M.
and
Grodzinski
P.
,
Bubble-Induced Acoustic Micromixing
,
Lab Chip
,
2002
,
2
,
151
157
.
24.
He
B.
,
Burke
B. J.
,
Zhang
X.
,
Zhang
R.
and
Regnier
F. E.
,
A Picoliter-Volume Mixer for Microfluidic Analytical Systems
.
Anal. Chem.
,
2001
,
73
,
1942
1947
.
25.
Johnson
T. J.
,
Ross
D.
and
Locascio
L. E.
,
Rapid Microfluidic Mixing
,
Anal. Chem.
,
2002
,
74
,
45
51
.
26.
Z. Chen, A. Mahesh and P. Andrzej, Numerical Simulation of Electroosmotic Flow in Micro Channels with Analytical Integration of Surface Potential, MSM Technical Proceedings, 2003, 186–189.
This content is only available via PDF.
You do not currently have access to this content.