A unified model is presented for the velocity of discrete droplets in microchannels actuated by surface tension modulation. Specific results are derived for the cases of electrowetting on dielectric (EWOD), dielectrophoresis (DEP), continuous electrowetting (CEW), and thermocapillary pumping (TCP). This treatment differs from previously published works by presenting one unified analytic model which is then simply applied to the specific cases of EWOD, CEW, DEP and TCP. In addition, the roles of equiliubrium contact angle and contact angle hysteresis are unambiguously described for each method. The model is shown to agree with experimental and theoretical results presented previously, predicting fluid velocities for a broad range of applications in digitized microfluidics.

1.
Pollack
M.
,
Fair
R.
, and
Shenderov
A.
,
2002
, “
Electrowetting-based actuation of droplets for integrated microfluidics
.”
Lab Chip
,
2
(
2
), pp.
96
101
.
2.
Colgate
E.
, and
Matsumoto
H.
,
1990
, “
An investigation of electrowetting-based microactuation
,”
J. Vac. Sci. Technol. A
,
8
(
4
), pp.
3625
3623
3.
Pollack
M.
,
Fair
R.
, and
Shenderov
A.
,
2000
, “
Electrowetting-based actuation of liquid droplets for microfluidic applications
.”
Appl. Phys. Lett.
,
77
(
11
), pp.
1725
1726
.
4.
Srinivasan, V., Pamula, V. K., Pollack, M., and Fair, R., 2003. “Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform.” In Proceedings of MicroTAS 2003, pp. 1287–1290.
5.
Fair, R., Khlystov, A., Srinivasan, V., Pamula, V., and Weaver, K., 2004. Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform. Lab-on-a-Chip: Platforms, Devices, and Applications 5591, Philadelphia, October.
6.
Shapiro
B.
,
Moon
H.
,
Garrell
R.
, and
Kim
C.
,
2003
. “
Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations
.”
J. Appl. Phys.
,
93
(
9
), pp.
5794
5811
.
7.
Lee
J.
,
Moon
H.
,
Fowler
J.
,
Schoellhammer
T.
, and
Kim
C.
,
2002
. “
Electrowetting and electrowetting-on-dielectric for microscale liquid handling
.”
Sensors and Actuators, Phys. A
,
95
, pp.
259
268
.
8.
Lee
J.
, and
Kim
C.
,
2000
. “
Surface-tension-driven actuation based on continuous electrowetting
.”
J. MEMS
,
9
(
2
), pp.
220
225
.
9.
Cho
S.
,
Moon
H.
, and
Kim
C.
,
2003
. “
Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits
.”
J. MEMS
,
12
(
1
), pp.
70
80
.
10.
Jones
T.
,
Fowler
J.
,
Chang
Y.
, and
Kim
C.
,
2003
. “
Frequency-based relationship of electrowetting and di-electrophoretic liquid microactuation
.”
Langmuir
,
19
, pp.
7646
7651
.
11.
Jones
T.
, and
Wang
K.
,
2004
. “
Frequency dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis
.”
Langmuir
,
20
, pp.
2813
2818
.
12.
Jones
T.
,
1974
. “
Hydrostatics and steady dynamics of spatially varying electromechanical flow structures
.”
J. Appl. Phys.
,
45
(
4
), pp.
1487
1491
.
13.
Wabg
K.
, and
Jones
T.
,
2004
. “
Frequency dependent bifurcation in electromechanical microfluidic structures
.”
J. Micromechanics and Microengineering
,
14
, pp.
761
768
.
14.
Fortner, N., and Shapiro, B., 2003. “Equilibrium and dynamic behavior of micro flows under electrically induced surface tension actuation force.” In ICMENS, pp. 197–202.
15.
Jones
T.
,
2002
. “
On the relationship of dielectrophoresis and electrowetting
.”
Langmuir
,
18
, pp.
4437
4443
.
16.
Zeng
J.
, and
Korsmeyer
T.
,
2004
. “
Principles of droplet electrohydrodynamics for lab-on-a-chip
.”
Lab Chip
,
4
, pp.
265
277
.
17.
Jackel
J.
,
Hackwood
S.
,
Veselka
J.
, and
Beni
G.
,
1983
. “
Electrowetting switch for multimode optical fibers
.”
Applied Optics
,
22
(
11
), pp.
1765
1770
.
18.
Jackel
J.
,
Hackwood
S.
, and
Beni
G.
,
1982
. “
Electrowetting optical switch
.”
Appl. Phys Lett.
,
40
(
1
), pp.
4
6
.
19.
Mohseni, K., and Dolatabadi, A., 2005. Electrowetting droplet actuation in micro scale devices. AIAA Paper 2005-0677, Reno, Nevada, January.
20.
Mohseni, K., 2005. “Effective cooling of integrated circuits using liquid alloy electrowetting.” In Proceedings of the 2005 IEEE SEMI-THERM Symposium, pp. 20–25.
21.
Griffiths, D. J., 1972. Introduction to Electrodynamics. Prentice Hall.
22.
Darhuber
A.
,
Valentino
J.
,
Troian
S.
, and
Wagner
S.
,
2003
. “
Microfluidie actuation by modulation of surface stresses
.”
Appl. Phys. Lett.
,
82
, p.
657
657
.
23.
Chen
J.
,
Troian
S.
,
Darhuber
A.
, and
Wagner
S.
,
2005
. “
Effect of contact angle hysteresis on thermocapillary droplet actuation
.”
J. Appl. Phys.
,
97
(
014906
), pp.
1
9
.
24.
Sammarco
T.
, and
Burns
M.
,
1999
. “
Thremocapillary pumping of discrete drops in microfabricated devices
.”
AICHE J.
,
45
(
2
), pp.
350
366
.
25.
Yang
L.-J.
,
Yao
T.-J.
,
Huang
Y.-L.
,
Xu
Y.
, and
I
Y.-C. T.
,
2004
. “
The marching velocity of the capillary meniscus in a microchannel
.”
J. Micromech. Microeng.
,
14
(
2
), pp.
220
225
.
26.
Sammarco
T.
, and
Burns
M. A.
,
2000
. “
Heat transfer analysis of microfabricated thermocapillary pumping and reaction devices
.”
J. Micromech. Microeng.
,
10
, pp.
42
55
.
27.
Richter
M.
,
Woias
P.
, and
Weiss
D.
,
1997
. “
Microchannel for applications in liquid dosing and flow rate measurement
.”
Sensors and Actuators A
,
62
, p.
480
480
.
This content is only available via PDF.
You do not currently have access to this content.